A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

نویسندگان

چکیده مقاله:

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More precisely, we prove that every bounded group of matrices with quaternion entries is similar to a group of unitary quaternion matrices.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Young inequality in quaternion matrices

Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...

متن کامل

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

متن کامل

Diagonalisation of covariance matrices in quaternion widely linear signal processing

Recent developments in quaternion-valued widely linear processing have established that the exploitation of complete second-order statistics requires consideration of both the standard covariance and the three complementary covariance matrices. Although such matrices have a tremendous amount of structure and their decomposition is a powerful tool in a variety of applications, the noncommutative...

متن کامل

Quaternion Algebra and Calculus

This document provides a mathematical summary of quaternion algebra and calculus and how they relate to rotations and interpolation of rotations. The ideas are based on the article [1].

متن کامل

The conjugate gradient algorithm applied to quaternion - valued matrices

The well known conjugate gradient algorithm (cg-algorithm), introduced by Hestenes & Stiefel, [1952] intended for real, symmetric, positive definite matrices works as well for complex matrices and has the same typical convergence behavior. It will also work, not generally, but in many cases for hermitean, but not necessarily positive definite matrices. We shall show, that the same behavior is s...

متن کامل

some results on higher numerical ranges and radii of quaternion matrices

‎let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $a$ be an $n-$square quaternion matrix‎. ‎in this paper‎, ‎some results on the $k-$numerical range of $a$ are investigated‎. ‎moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $a$ are introduced‎, ‎and some of their algebraic properties are studied‎.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 3 (Special issue)

صفحات  97- 148

تاریخ انتشار 2018-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023