کاربرد تجزیه و تحلیل طیف مخلوط نرمال شده (NSMA) جهت استخراج مناطق ساخته شده شهری و استفاده از آن در شبکه عصبی مصنوعی (MLP) برای پیش بینی رشدآتی شهر
نویسندگان
چکیده مقاله:
استفاده از تصاویر ماهوارهای با قدرت تفکیک مکانی متوسط به منظور شناسایی، نظارت و پیشبینی مناطق ساخته شده شهری در دهههای اخیر توسعه یافته است. مهمترین گام در پیشبینی رشد مناطق شهری، استخراج ویژگیهای سطح شهر با دقت و صحت بالا و مهمترین چالش در این راه پیچیدگی عوارض شهری و مسئله پیکسلهای مخلوط است. هدف از این تحقیق استفاده از مدلهای تجزیه و تحلیل زیر پیکسل، برای استخراج عوارض سطحی شهر رشت به منظور پیشبینی برای تغییرات رشد آتی این شهر است. بدین منظور از سه تصویر لندست مربوط به سالهای؛ 0991 (سنجنده TM)، 2002 (سنجنده +ETM) و5102 (سنجنده OLI/TIRS) و روش تجزیه و تحلیل طیف مخلوط نرمال شده (NSMA)، برای استخراج عوارض سطحی استفاده شد. برای طبقه بندی تصاویر از لایههای کسری پوشش به عنوان لایههای ورودی و عضوهای پایانی به عنوان نمونههای آموزشی و الگوریتم حداکثر احتمال به عنوان الگوریتم طبقهبندیکننده استفاده شد؛ که در نتیجه صحت کلی بالای 99%و ضریب کاپای بالای 89/0 برای تصاویر سه دوره بدست آمد. به منظور پیشبینی رشد شهری با شبکه عصبی در این تحقیق از مدل پرسپترون چند لایه(MLP)با الگوریتم یادگیری پس انتشار (BP) استفاده شد. نتایج مقایسه خروجی مدل با نقشه طبقهبندی سال 5102 ، ضریب کاپای 29%،کاپای استاندارد 98% و کاپای طبقهای (برای طبقه ساخته شده) 39%، را نشان داد. مدل استفاده شده در این تحقیق در پیش بینی رشد مرزهای شهر موفق عمل کرده است، اما در پیشبینی مناطق ساخته شده انفرادی اطراف شهر صحت کمتری دارد.
منابع مشابه
کاربرد تجزیه و تحلیل طیف مخلوط نرمال شده (nsma) جهت استخراج مناطق ساخته شده شهری و استفاده از آن در شبکه عصبی مصنوعی (mlp) برای پیش بینی رشدآتی شهر
استفاده از تصاویر ماهواره ای با قدرت تفکیک مکانی متوسط به منظور شناسایی، نظارت و پیش بینی مناطق ساخته شده شهری در دهه های اخیر توسعه یافته است. مهم ترین گام در پیش بینی رشد مناطق شهری، استخراج ویژگی های سطح شهر با دقت و صحت بالا و مهم ترین چالش در این راه پیچید گی عوارض شهری و مسئله پیکسل های مخلوط است. هدف از این تحقیق استفاده از مدل های تجزیه و تحلیل زیر پیکسل، برای استخراج عوارض سطحی شهر رشت...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملپیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی
آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 24 شماره 96
صفحات 65- 77
تاریخ انتشار 2016-02-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023