پیش‌بینی بارش ماهانه با استفاده از شاخص‏ های اقلیمی پیوند از دور با استفاده از شبکۀ عصبی مصنوعی و مدل‏ آماری (‌مطالعۀ موردی: ایستگاه‌های هم‌جوار ششده و قره‌بلاغ)

نویسندگان

  • عباسعلی ولی دانشیار دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان
  • محمدرضا شکاری دانشجوی دکتری بیابان‌زدایی، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان
چکیده مقاله:

بسیاری از متغیرهای هواشناسی از جمله بارش به‌شدت به گردش‏های جوّی‌ـ اقیانوسی بزرگ‌مقیاس وابسته‌اند. در پژوهش حاضر تأثیر سیگنال‏های اقلیمی بر میانگین بارش ماهانۀ ایستگاه‏های مجاور مناطق ششده و قره‌بلاغ طی دورۀ آماری 25 ساله از 1364 تا 1388 بررسی شده است. شبیه‌سازی بارش با استفاده از مدل‏های آماری و شبکۀ عصبی انجام شده است. همبستگی سیگنال‏های اقلیمی با بارش در حالت‏های مختلف بدون تأخیر و با تأخیرهای 3، 6، 9، 12 ماهه ارزیابی شد. مهم‌ترین شاخص‏ها از بین20 شاخص اقلیمی، شاخص‏های NINO1.2، NINO3 و WHWP به‌ترتیب با ضریب همبستگی 61، 45 و 33 درصد در سطح احتمال 95 درصد انتخاب شدند. نتایج نشان داد بیشترین همبستگی شاخص‏های اقلیمی با بارش تأخیری 6 ماهه دارد. نتایج شبیه‌سازی مدل‏ها نشان داد شبکۀ عصبی مصنوعی دقت بیشتری نسبت به مدل آماری دارد. این مدل قادر است میزان بارش را با توجه به نوسانات شاخص‏های انتخابی با ضریب همبستگی 66 درصد و ریشۀ میانگین مربعات خطای (RMSE) 38/1 شبیه‌سازی کند. درنهایت، پیش‌بینی با ضریب تبیین 44 درصد به‌مدت 5 سال توسط شبکۀ عصبی مصنوعی انجام پذیرفت. بنابراین، با توجه به اهمیت بارش و بحران جدی آب در منطقه، به‌منظور مدیریت منابع آب، شناخت پارامترهای مؤثر بر بارش و پیش‌بینی بلند‌مدت آن لازم و ضروری است.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‌بینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکۀ عصبی مصنوعی (مطالعۀ موردی: حوزۀ فلات مرکزی ایران)

تحقیق حاضر با هدف بررسی تأثیر شاخص‌های پیوند از دور بر رخداد بارش ماهانه و پیش‌بینی بارندگی در حوزۀ آبخیز فلات مرکزی ایران با استفاده از مدل شبکة عصبی مصنوعی چندگامی مستقیم (DMSNN) با پارامترهای مذکور است. براین مبنا مقادیر بارش طی دورة مشترک آماری 1981-2014 در 20 ایستگاه سینوپتیک منطقۀ مورد مطالعه انتخاب شد، به‌طوری که دورۀ آماری 1981- 2004 برای توسعة مدل و سال‌های 2004-2014 جهت صحت‌سنجی مدل ب...

متن کامل

The effect of cyclosporine on asymmetric antibodies and serum transforming growth factor beta1 in abortion-prone model of mice CBA/J x DBA/2

كچ ي هد فده و هقباس : ي ک ي طقس زورب للع زا اه ي ،ررکم ا لماوع تلاخد ي ژولونوم ي ک ا رد ي ن قم طققس عون ي وراد دقشاب ي س ي روپسولک ي ،ن ح لدم رد طقس شهاک بجوم ي ناو ي CBA/j×DBA/2 م ي تنآ ددرگ ي داب ي اه ي ان و راققتم TGF-β لماوع زا عت مهم يي ن گلماح تشونرس هدننک ي سررب روظنم هب رضاح هعلاطم تسا ي ات ث ي ر اس ي روپسولک ي ن م رب ي از ا ي ن تنآ عون ي داب ي س و اه ي اکوت ي ن TGF...

متن کامل

The Study of Stressful Factors in Clinical Education for Nursing Students Studying in Nursing and Midwifery College in Khorramabad

کچ هدي پ شي مز هني فده و : شزومآ لاب يني شخب ساسا ي شزومآ مهم و راتسرپ ي تسا . و هنوگ ره دوج لکشم ي شزومآ رد لاب يني ، آراک يي هدزاب و ا ني شزومآ زا شخب راچد ار لکشم م ي دنک . فده اب رضاح شهوژپ سررب ي لماوع سرتسا از ي شزومآ لاب يني رد وجشناد ناي راتسرپ ي هدکشناد راتسرپ ي و يامام ي ماـجنا داـبآ مرـخ تسا هتفرگ . شور و داوم راک : رضاح هعلاطم کي هعلاطم صوت يفي عطقم ي تسا . د...

متن کامل

مقایسۀ کارایی شبکۀ عصبی مصنوعی در پیش‌بینی خشکسالی هواشناسی با استفاده از پیوند از دور و پارامترهای اقلیمی (مطالعۀ موردی: جنوب استان قزوین)

خشکسالی در نگاهی کلی معلول یک دورۀ شرایط خشک غیرعادی است که به اندازۀ کافی دوام داشته و سبب عدم تعادل در وضعیت هیدرولوژیک یک ناحیه همچون افت منابع آب سطحی و زیرزمینی می‌گردد. هدف از این تحقیق مدل‌سازی پیش‌بینی خشکسالی هواشناسی در سه مقیاس زمانی کوتاه­مدت، میان­مدت و بلند­مدت در ایستگاه باران­سنجی واقع در دشت جنوبی استان قزوین، با استفاده از شبکۀ عصبی پرسپترون چندلایه و با در نظر گرفتن پارامترها...

متن کامل

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  391- 403

تاریخ انتشار 2016-09-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023