مدلسازی و بهینهسازی نانوبیوسنسور الیگونوکلئوتیدی با استفاده از رویکرد مبتنی بر شبکه عصبی مصنوعی و الگوریتم ژنتیک
نویسندگان
چکیده مقاله:
توسعه هر نوع بیوسنسور با چالشهایی در زمینه بهینهسازی پارامترها و کالیبراسیون مواجه است. در این تحقیق رویکردی مبتنی بر یادگیری ماشین برای مدلسازی و بهینهسازی مولفههای تاثیرگذار در ساخت نانوبیوسنسور الکتروشیمیایی بر اساس الکترود کربن شیشهای اصلاح شده با گرافن اکسید و نانومیله طلا در شرایط کاری آزمایشگاهی ارائه شده است. پاسخ نانوبیوسنسور به عنوان خروجی و تاثیر هشت عامل موثر شامل: غلظت گرافن اکسید، غلظت نانو میلههای طلا، غلظت پروب تکرشتهای، مدت زمان ماند پروب تکرشتهای بر روی الکترود اصلاح شده، مدت زمان ماند MCH بر روی الکترود اصلاح شده، مدت زمان هیبریداسیون پروب و الیگونوکلئوتید هدف، غلظت محلول شناساگر اوراستبلو، مدت زمان ماند اوراستبلو، به عنوان ورودیهای مدل شبکه عصبی برای آموزش و توسعه مدل مورد استفاده قرار گرفتند. نتایج بدست آمده نشان داد که خروجی مدل همخوانی قابل قبولی با نتایج آزمایشگاهی داشته و مدل میتواند پاسخ نانوبیوسنسور را با دقت 91/96 درصد و میانگین درصد خطای مطلق 5090/5 درصد پیشبینی کند. در پایان با استفاده از الگوریتم ژنتیک مقادیر بهینه متغیرهای ورودی برای دستیابی به حداکثر جریان پاسخ نانوبیوسنسور، محاسبه گردید. نتایج بهینهسازی نشان داد که این روش عملکرد مناسبی در مقایسه با نتایج آزمایشگاهی دارد و میتواند برای ساخت و طراحی نانوبیوسنسور مورد استفاده قرار بگیرد.
منابع مشابه
مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملپیشبینی مدیریت سود مبتنی بر مدل جونز تعدیل شده با استفاده از مدل شبکه عصبی مصنوعی و الگوریتم ژنتیک
در سالهای اخیر مدیریت سود در پژوهش های دانشگاهی توجه زیادی را به خود جلب کرده است. هدف این پژوهش پیش بینی مدیریت سود از طریق اقلام تعهدی اختیاری مبتنی بر مدل جونز تعدیل شده است. در این پژوهش از دو مدل شبکه عصبی مصنوعی و مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی به عنوان الگوی موفقجهت پیش بینی مدیریت سود مبتنی بر جونز تعدیل شده در بورس اوراق بهادار تهران استفاده شده است. نمونه مورد استفاده در این پژ...
متن کاملمدلسازی فرایند تبدیل خشک متان بهکمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
پیشبینی فراوردههای (هیدروژن و کربن مونوکسید) تبدیل خشک متان بهکمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیهسازی شد. دادههای تجربی موردنیاز برای مدلسازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمعآوری شد. اثر عاملهای فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینشپذیری نسبت به فراوردههای مورد بررسی قرار گرفتند. شبکه پیشخور با الگوری...
متن کاملبهینهسازی فرایندهای عملیاتی پیش تصفیه آب صنعتی با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
متن کامل
مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملمدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 51 شماره 1
صفحات 171- 181
تاریخ انتشار 2020-03-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023