روشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
نویسندگان
چکیده مقاله:
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membership with certainty. A question may be raised here: how much the level of the certainty of this classification, based on hyperplane, can be trusted. In the standard SVM classification, the significance of error for different train data is considered equal and every datum is assumed to belong to just one class. However, in many cases some of train data, including outlier and vague data with no defined model, cannot be strictly considered as a member of a certain class. That means, a train datum may does not exactly belong to one class and its features may show 90 percent membership of one class and 10 percent of another. In such cases, by using fuzzy SVM based on fuzzy logic, we can determine the significance of data in the train phase and finally determine relative class membership of data. The method proposed by Lin and Wang is a basic method that introduces a membership function for fuzzy support vector machine. Their membership function is based on the distance between a point and the center of its corresponding class. In this paper, we introduce a new method for giving membership to train data based on their distance from distinctive hyperplane. In this method, SVM classification together with primary train data membership are used to introduce a fuzzy membership function for the whole space using symmetrical triangular fuzzy numbers. Based on this method, fuzzy membership function value of new data is selected with minimum difference from primary membership of train data and with the maximum level of fuzzification. In the first step, we define the problem as a nonlinear optimization problem. Then we introduce an efficient algorithm using critical points and obtain final membership function of train data. According to the proposed algorithm, the more distant data from the hyperplane will have a higher membership degree. If a datum exists on the hyperplane, it belongs to both classes with the same membership degree. Moreover, by comparing the primary membership degree of train data and calculated final distribution, we compute the level of noise for train data. Finally, we give a numerical example for illustration the efficiency of the proposed method and comparing its results with the results of the Lin and Wang approach.
منابع مشابه
مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملشناسایی ربات های وب با استفاده از ترکیب رویکردهای مبتنی بر ماشین های بردار پشتیبان فازی
This article has no abstract.
متن کاملروشی جدید برای بهبود کلاسبندی اهداف هوایی راداری توسط کرنلهای مختلف ماشین بردار پشتیبان
امروزه مبحث کلاسبندی اهداف هوایی اهمیت روزافزونی یافته است و روشهای مختلفی برای رسیدن به این هدف مورد استفاده قرار می-گیرد. ماشین بردار پشتیبان از جمله جدیدترین روشهای مورد استفاده در این حوزه میباشد. در این مقاله برای کلاسبندی سه هدف جنگنده، هواپیمای مسافربری و هلیکوپتر از سه روش کلاسبندی چند کلاسه ماشین بردار پشتیبان شامل روش یکی در برابر یکی، یکی در برابر همه و گراف غیرچرخشی جهتدار پ...
متن کاملروشی جدید برای بهبود کلاس بندی اهداف هوایی راداری توسط کرنل های مختلف ماشین بردار پشتیبان
امروزه مبحث کلاس بندی اهداف هوایی اهمیت روزافزونی یافته است و روش های مختلفی برای رسیدن به این هدف مورد استفاده قرار می-گیرد. ماشین بردار پشتیبان از جمله جدیدترین روش های مورد استفاده در این حوزه می باشد. در این مقاله برای کلاس بندی سه هدف جنگنده، هواپیمای مسافربری و هلی کوپتر از سه روش کلاس بندی چند کلاسه ماشین بردار پشتیبان شامل روش یکی در برابر یکی، یکی در برابر همه و گراف غیرچرخشی جهت دار پ...
متن کاملبهبود دقت شناسایی غواص با استفاده از الگوریتم کلاسبندی ماشین بردار پشتیبان
ویژگیهای منحصر به فرد و امکان انتشار آسان سیگنال های صوتی در محیط زیرآب، امکان شناسایی و رد گیری اهداف زیر آبی بوسیله آنها را فراهم میکند. از جمله کاربردهای پدافندی سیگنال صوتی در حوزهی دریا میتوان استفاده از سونار برای شناسایی غواص به منظور جلوگیری از نفوذ غواصان در نیروگاه های ساحلی و همچنین حفاظت از تجهیزات بندرگاهی و ... را نام برد. برای این مقصود شناسایی صحیح غواص از سایر اهداف زیر آبی...
متن کاملشناسایی ساختمانها از دادههای لایدار و نوری با استفاده از ماشین بردار پشتیبان در آنالیزهای پیکسلمبنا و شیمبنا
شناسایی ساختمانها از تصـاویر هوایی و ماهوارهای یک بحث تحقیقاتی فعال در حوزهی سنجش از دور و ماشین بینایی در طی سالهای اخیر است. الگوریتمهای طبقهبندی عوارض، در مناطق پیچیده شهری مانند منطقه مورد مطالعه که ساختمانها در میان تراکم درختان و دارای سقف شیروانی و قسمتهایی از شیشه هستند، با مشکلات بسیاری مواجه میباشند.در این مقاله برای مقابله با مشکلات ذکر شده، ویژگیهای شیمبنا، ارتفاعی و...جه...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره 3
صفحات 101- 112
تاریخ انتشار 2018-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023