تأثیر پیش‌پردازش متغیرهای ورودی به شبکه عصبی برای پیش‌بینی جریان ماهانه با آنالیز مؤلفه‌های اصلی و موجک

نویسندگان

  • اشکان فرخ‌نیا دانشجوی کارشناسی ارشد مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
  • حسین ریاحی مدوار دانشجوی دکترای سازه‌های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
  • سعید مرید دانشیار گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
چکیده مقاله:

برآورد جریان حوضه آبریز با توجه به کاربرد گسترده آن در علوم مرتبط با صنعت آب، از دیرباز مورد توجه پژوهشگران بوده است. ارائه الگوهای نو و به‌کارگیری تکنیک‌های پیشرفته می‌تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیرخطی شود. در این تحقیق برای پیش‌بینی جریان ماهانه، از شبکه عصبی پیشخور استفاده گردیده است. به علت تعداد زیاد متغیرهای مورد استفاده در این تحقیق برای پیش‌بینی جریان، شناخت متغیرهای مؤثر بر شبکه می‌تواند باعث بهبود نتایج گردد. به این منظور، با استفاده از تکنیک آماری آنالیز مؤلفه‌های اصلی، که باعث کاهش تعداد متغیرها و ورود متغیرهای مؤثر به شبکه می‌شود، اقدام به مدل‌سازی جریان شد (PCA-ANN). در ابتدا از PCA برای کاهش متغیرهای ورودی استفاده شد و پس از تبدیل 18 متغیر به 18 مؤلفه جدید، از 8 مؤلفه اول در بهترین مدل به عنوان ورودی به شبکه استفاده گردید. همچنین با استفاده از موجک، پیش‌پردازش روی متغیرهای اصلی صورت گرفت و مدلی نیز برای پیش‌بینی جریان با این روش ارائه شد (WNN). در نهایت، نتایج به‌دست آمده از این سه مدل، حاکی از نقش مؤثر پیش‌پردازش روی متغیرها توسط PCA و موجک بود. همچنین در مقایسه با مدل‌های ANN و WNN در مدل PCA-ANN ، ساختار ساده‌تر، سرعت آموزش شبکه بیشتر و نتایج رضایت‌بخش‌تر بود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر پیش پردازش متغیرهای ورودی به شبکه عصبی برای پیش بینی جریان ماهانه با آنالیز مؤلفه های اصلی و موجک

برآورد جریان حوضه آبریز با توجه به کاربرد گسترده آن در علوم مرتبط با صنعت آب، از دیرباز مورد توجه پژوهشگران بوده است. ارائه الگوهای نو و به کارگیری تکنیک های پیشرفته می تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیرخطی شود. در این تحقیق برای پیش بینی جریان ماهانه، از شبکه عصبی پیشخور استفاده گردیده است. به علت تعداد زیاد متغیرهای مورد استفاده در این تحقیق برای پیش بینی جریان، شناخت متغ...

متن کامل

مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

پیش‌بینی بارش ماهانه با مدل ترکیبی شبکه ‌عصبی مصنوعی-موجک و مقایسه با مدل شبکه‌ عصبی ‌مصنوعی

بدون شک اولین قدم در مدیریت رودخانه پیش­بینی بارش سطح حوضه آبریز می­باشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدل­ها هنوز هم به منظور تعریف چنین پدیدة پیچیده­ای در زمینه مهندسی هیدرولوژیک توسعه داده می­شوند. اخیراً شبکه­های ­عصبی ­مصنوعی به عنوان یک برون­یابی و درون‌یابی غیرخطی گسترده توسط هیدرولوژیست­ها مورد استفاده قرار می­گیرد. در پژوهش حاضر، تجزیه و تحلیل­ موجک ...

متن کامل

پیش‌بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (PCA) بر عملکرد مدل ماشین بردار پشتیبان (SVM) برای پیش‌بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل SVM، دبی جریان ماهانه پیش‌بینی شد. سپس با استفاده از PCA تعداد متغیرهای ورودی به مدل SVM از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره 1

صفحات  13- 22

تاریخ انتشار 2009-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023