ارزیابی کاربرد مدلهای شبکه عصبی و رگرسیونی به منظور پیش بینی تنوع گونهای با استفاده از برخی عوامل خاکی و فیزیوگرافی (مطالعه موردی: حوزه آبخیز خرابه سنجی ارومیه)
نویسندگان
چکیده مقاله:
اندازه گیری مستقیم تنوع گونهای امری وقتگیر و هزینهبر بوده و تا حدی به دلیل خطاهای حاصل از نمونهگیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتورهای کمهزینه در پیشبینی تنوع گونهای بوسیله شبکه مدلهای عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونهبرداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتیمتری خاک صورت گرفت.اطلاعات پوشش گیاهی به منظور اندازهگیری تنوع گونهای بوسیله شاخص تنوع شانون-وینر ثبت گردید. همچنین بهمنظور تعیین عوامل تاثیرگذار بر تنوع گونهای، فاکتورهای هدایت الکتریکی، اسیدیته، وزن مخصوص ظاهری، درصدهای ماده آلی، رس، سیلت، رطوبت اشباع، خاکدانههای درشت و ریز و شیب و ارتفاع تعیین و اندازهگیری شد.سپس با استفاده از مدلهای شبکه عصبی نوع پرسپترون چند لایه، شبکه عصبی تطبیقی-فازی و رگرسیونی تخمین تنوع گونهای تعیین شد.نتایج نشان داد که معیارهای مجذور میانگین مربعات خطا و ضریب کارایی در مدل رگرسیونی به ترتیب 14/0 و 39/0 و در مدل شبکه عصبی مصنوعی 07/0 و 86/0 و در مدل شبکه عصبی تطبیقی-فازی 09/0 و 70/0 میباشند. همچنین میانگین تنوع شانون وینر برای منطقه برابر 1.98 بود.در واقع مدل شبکه عصبی مصنوعی به عنوان ابزار قدرتمندتری در پیشبینی تنوع گونهای نسبت به آنالیز رگرسیون خطی چندمتغیّره و شبکه عصبی تطبیقی-فازی عمل میکند.
منابع مشابه
ارزیابی کاربرد مدل های شبکه عصبی و رگرسیونی به منظور پیش بینی تنوع گونه ای با استفاده از برخی عوامل خاکی و فیزیوگرافی (مطالعه موردی: حوزه آبخیز خرابه سنجی ارومیه)
اندازه گیری مستقیم تنوع گونهای امری وقتگیر و هزینهبر بوده و تا حدی به دلیل خطاهای حاصل از نمونهگیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتورهای کمهزینه در پیشبینی تنوع گونهای بوسیله شبکه مدلهای عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونهبرداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتیمتری خاک صورت گر...
متن کاملپیش بینی سیلاب در زمان واقعی با استفاده از مدلهای رگرسیونی و شبکه های عصبی مصنوعی (مطالعه موردی)
متن کامل
کاربرد شبکه عصبی مصنوعی در پیش بینی رواناب ناشی از ذوب برف (مطالعه موردی: حوزه آبخیز سد لتیان)
Flood is one of the natural disaster phenomena and flood prediction is very important. The rainfall-runoff process and flood are physical phenomena that these analyses are difficult due to the influence of various parameters. There are different methods and models for these phenomena analysis. This study is carried out for rainfall-runoff process simulation using artificial neural network (ANN...
متن کاملمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملارزیابی کاربرد مدل های شبکه عصبی مصنوعی، شبکه عصبی تطبیقی فازی و رگرسیون در پیش بینی کربن آلی ذره ای در مراتع خرابه سنجی ارومیه
کربن آلی خاک اثرات مفیدی روی خواص شیمیایی، فیزیکی و حرارتی خاک داشتهو همچنین روی فعالیت های بیولوژیکی خاک ها موثر است. کربن آلی ذرهاییکی از بخش های مهم ناپایدار مواد آلی می باشد و نقش قابل توجهی در کیفیت خاک و مدیریت سرزمینهای مرتعی دارد. در این تحقیق جهت برآورد دقیق کربن آلی ذرهای خاک از مدل های شبکه عصبی مصنوعی (ann)، شبکه عصبی تطبیقی- فازی(anfis) و رگرسیون چند متغیره استفاده شد. جهت ا...
متن کاملارزیابی کاربرد مدل های شبکه عصبی مصنوعی، شبکه عصبی تطبیقی فازی و رگرسیون در پیشبینی کربن آلی ذره ای در مراتع خرابه سنجی ارومیه
کربن آلی خاک اثرات مفیدی روی خواص شیمیایی، فیزیکی و حرارتی خاک داشتهو همچنین روی فعالیتهای بیولوژیکی خاکها موثر است. کربن آلی ذرهاییکی از بخش های مهم ناپایدار مواد آلی می باشد و نقش قابل توجهی در کیفیت خاک و مدیریت سرزمینهای مرتعی دارد. در این تحقیق جهت برآورد دقیق کربن آلی ذرهای خاک از مدلهای شبکه عصبی مصنوعی (ANN)، شبکه عصبی تطبیقی- فازی(ANFIS) و رگرسیون چند متغیره استفاده شد. جهت ا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 65- 80
تاریخ انتشار 2014-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023