نامساوی یانگ در عملگرهای از رده ی اثر حالت تساوی

thesis
abstract

نامساوی عددی یانگ یکی از نامساوی های مهم در آنالیز می باشد. پژوهش های زیادی درباره ی تعمیم این نامساوی در جبرهای دیگر و بررسی شرایط تساوی در آن انجام شده است . در سال 2003 ارگرامی و فرنیک نامسوی یانگ را در عملگرهای از رده ی اثر بررسی نموده ونتایج مهمی در مورد حالت تساوی بدست آوردند. تا کنون هیچ توصیفی از حالت تساوی در نامساوی یانگ، در عملگرهای فشرده شناخته نشده است به بیان دیگر مساله ی تساوی در نامساوی یانگ برای عملگرهای فشده یک مساله باز است. در این پایان نامه عملگرهای هیلبرت-اشمیت و از رده ی اثر را تعریف می نماییم و برای عملگرهای اخیر ثابت می کنیم که شرط هیلبرت-اشمیت با تساوی اثرها هم ارز است. براساس هم ارزی مذکور مساله ی تساوی در نامساوی عملگری یانگ را در حالت خاص عملگرهای از رده ی اثر که زیر رده ی مهمی از عملگرهای فشرده می باشند مورد بررسی قرار می دهیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

full text

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

full text

نامساوی های یانگ ماتریسی

نامساوی ها یکی از مهمترین حوزه های پژوهشی آنالیز ماتریسی هستند که از ابتدا مورد علاقه بسیاری از ریاضی دانان بوده و کاربردهایی در علوم مختلف از جمله محاسبات علمی، نظریه سیستم و کنترل، تحقیق در عملیات، فیزیک ریاضی، استاتیک، اقتصاد و مهندسی دارد. نخستین بار در سال $1934$ کتاب تقریبا جامعی با نام "نامساوی ها" cite{h} توسط هاردی، ltrfootnote{g. h. hardy} لیتل وود ltrfootnote{e. little...

15 صفحه اول

نامساوی های یانگ وهاینز برای ماتریس ها

دراین پایان نامه ابتدا نتایج ثابت شده در زمینه فرم ماتریسی نامساوی میانگین حسابی- هندسی و نامساوی یانگ را مورد بررسی قرار می دهیم. اگر 0? ? ?1 ‚ نامساوی یانگ برای دو عدد حقیقی نامنفی a,b ‚ نامساوی میانگین حسابی- هندسی با وزن ? می باشد که . a^( ?) b^(1-?) ? ?a+(1- ?)b همچنین میانگین هاینز برای دو عدد حقیقی نامنفی a,b به این صورت تعریف می شود: h_? (a,b)=(a^( ?) b^(1-?)+a^( 1-?) b^? )/2. در ادا...

نامساوی ها برای عملگرهای فشرده

در این پایان نامه برخی از نامساوی های عددی را برای عملگرهای فشرده بررسی می کنیم. اگر چه توسیعی از کارهای مربوط به نامساوی های عملگری بویژه توابع یکنواعملگری و محدب عملگری وجود دارد اما نتایج بیشتری در مورد نامساوی های عملگری بواسطه ی طیف یا مقادیر ویژه بدست می آیند. تامسون اولین نامساوی اساسی، یعنی نامساوی مثلث را برای ماتریس های مختلط n*n اثبات نمود. نتایج تامسون توسط آکمان-اندرسن و پدرسن به ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023