خواص تصادفی طول عمر مولفه های فعال تشکیل دهنده ی سیستم های 1+n-k از n از کار افتاده و مقایسه ی تصادفی آنها

thesis
abstract

یک سیستم 1 n-k+ از n را که تا زمان مشاهده ی k-امین شکست به فعالیت خود ادامه می دهد، در نظر بگیرید. فرض کنید این سیستم شامل n مولفه باشد، به طوری که طول عمر i-امین مولفه با متغیر تصادفی xi توصیف شود. برای مقادیر k متعلق به مجموعه ی {1n-,...,1,2} باقی مانده ی عمر مولفه های فعال بر جای مانده بعد از k-امین شکست در سیستم را با متغیرهای تصادفی x_1^((k))، x_2^((k))،...، x_(n-k)^((k)) نشان می دهیم. در این رساله توزیع توام و حاشیه ای این متغیرهای تصادفی را به دست می آوریم و شرایط کافی برای ضمانت این موضوع که توزیع طول عمر مولفه های اصلی نمایی باشد را مشخص می کنیم. در پایان نیز باقی مانده ی عمر مولفه ها و طول عمر اولیه ی آن ها و همچنین باقی مانده ی عمر مولفه های بر جای مانده از دو سیستم 1 n-k+ از n را از نقطه نظر ترتیب های تصادفی مقایسه خواهیم کرد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

مقایسه تصادفی عمر گذشته و عمر بقای سیستم (n-k+1) از n با مولفه های مستقل و وابسته

سیستم (n-k+1) از n، سیستمی بر اساس n مولفه هست و این سیستم کار می کند اگر و تنها اگر n-k+1 از n مولفه آن فعال باشند (k?n). این سیستم بطور گسترده ای در صنعت، قابلیت اعتماد و بررسی تحلیل بقا به کار برده می شود. در نظریه کلاسیک سیستم ها، فرض می شود که مولفه های سیستم مستقل و دارای توزیع یکسان می باشند. اما در حالت واقعی ممکن است ساختاری غیرهمسان و وابسته بین مولفه ها وجود داشته باشد. در این پایان ...

نتایجی جدید در مقایسه تصادفی سیستم های (n-1) از n

فرض کنید دو گروه از متغیرهای تصادفی در اختیارند که اولین گروه متغیرهای تصادفی مستقل و غیر هم‌توزیع و دیگری متغیرهای تصادفی مستقل و هم‌توزیع هستند. در این مقاله، در حالتی که حجم دو نمونه نابرابرند و تمامی متغیرها دارای توزیع نمایی هستند، شرایط لازم و کافی برای برقراری ترتیب متوسط باقی‌مانده عمر، ترتیب نرخ خطر و ترتیب پراکندگی، میان دومین آماره مرتب دو گروه، به دست آورده می‌شود. همچنین هنگامی ...

full text

مطالعه ای بر خواص طول عمر سیستم های k از n متوالی

در سال های اخیر سیستم های متوالی در شاخه های مختلف علوم، مانند علوم مهندسی، جایگاه ویژه ای یافته اند. به همین دلیل قابلیت اعتماد آنها توسط محققان زیادی مورد مطالعه قرار گرفته است. مطالعه و بررسی این سیستم ها منجر به شناخت بهتر سیستم های اولیه، از جمله سیستم سری می شود. سیستم های k از n متوالی از یک نقطه نظر به دو کلاس سیستم های k از n شکست متوالی و k از n پیروزی متوالی تقسیم می شوند. سیستم k از...

15 صفحه اول

محاسبه سطح دقت حدود تحمل برای طول عمر سیستم های k از n

فاصله های تحمل مورد توجه بسیاری از پژوهشگران قرار گرفته و به طور گسترده ای در صنعت به کار می رود. فاصله تحمل یک فاصله تصادفی است که با یک ضریب اطمینان مشخص، نسبتی از جامعه مورد بررسی را پوشش می دهد. در این مقاله، ابتدا حدود تحمل آماری شامل حدود تحمل با پوشش مورد انتظار β و حدود تحمل با میزان پوشش β و سطح اطمینان γ برای طول عمر سیستم های k از n با مولفه های توزیع شده با توزیع نمایی بیان می شوند....

full text

نتایجی جدید در مقایسه تصادفی سیستم های (n-۱) از n

فرض کنید دو گروه از متغیرهای تصادفی در اختیارند که اولین گروه متغیرهای تصادفی مستقل و غیر هم توزیع و دیگری متغیرهای تصادفی مستقل و هم توزیع هستند. در این مقاله، در حالتی که حجم دو نمونه نابرابرند و تمامی متغیرها دارای توزیع نمایی هستند، شرایط لازم و کافی برای برقراری ترتیب متوسط باقی مانده عمر، ترتیب نرخ خطر و ترتیب پراکندگی، میان دومین آماره مرتب دو گروه، به دست آورده می شود. همچنین هنگامی که ...

full text

Survey of the nutritional status and relationship between physical activity and nutritional attitude with index of BMI-for-age in Semnan girl secondary school, winter and spring, 2004

دیکچ ه باس فده و هق : ب یناوجون نارود رد هیذغت تیعضو یسررب ه زا ،نارود نیا رد یراتفر و یکیزیف تارییغت تعسو لیلد ب تیمها ه تسا رادروخرب ییازس . یذغتءوس نزو هفاضا ،یرغلا ،یقاچ زا معا ه هیذغت یدق هاتوک و یناوـجون نارود رد یا صخاش نییعت رد ب نارود رد یرامیب عون و ریم و گرم یاه م یلاسگرز ؤ تـسا رث . لماوـع تاـعلاطم زا یرایسـب لـثم ی هتسناد طبترم هیذغت عضو اب بسانم ییاذغ تاداع داجیا و یتفایرد یفاضا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023