fabricating electrospun poly(3-hydroxybutyrate)/hydroxyapatite nanocomposite scaffold for tissue engineering application

thesis
abstract

. در رســاله ی حاضر، ابتدا داربست نانوالیاف سه بعدی متخلخل به روش الگوبرداری تصویری شبیه سازی شد. با استفاده از طراحی آزمایش به روش تاگوچی پس از ساخت داربست های پلی (3- هیدروکسی بوتیرات) (p3hb) شناسایی رفتار پارامترهای موادی مثل لزجت سیال پلیمر، فراریت و رسانایی الکتریکی محلول پلیمری و پارامترهای دستگاهی مثل دبی حجمی سیال، ولتاژ الکتریکی و فاصله نازل تا جمع کننده صورت گرفت. بعد از محاسبه ی خصوصیات ساختاری داربست ها از قبیل تعداد واندازه ی تخلخل ها، حجم تخلخل، ارتباط داخلی منافذ وشاخص نفوذپذیری (wpi)، شرایط بهینه جهت تولید کاراترین داربست نانوالیافی تحلیل گردید. صحت معیار بدست آمده با عنوان"راندمان عبوردهی داربست" (spe) و توانایی پیشگویی آن با انجام آزمایش کشت سلول های فیبروبلاست موش (l929) بر روی داربست هایی که ازلحاظ ساختاری متمایز بودند تایید شد. با شناخت کامل پارامترهای موادی و دستگاهی بهینه ترین داربست ممکن از لحاظ ساختاری تهیه شد و با 5 تا 15 درصد وزنی از نانو ذرات هیدروکسی آپاتیت طبیعی تقویت گردید. آزمون های فیزیکی و مکانیکی به منظور بررسی اثر درصد نانوذرات در بیو- نانوکامپوزیت حاصل به منظور استفاده در مهندسی بافت استخوان و غضروف نشان از بهبود خواص مکانیکی حاصل از آزمون کشش و خواص فیزیکی حاصل از طیف سنجی ftir تا حداکثر 8% وزنی از نانوذرات در بستر زیست تخریب داد.

similar resources

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

full text

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

full text

Electrospun Nanofibers and their Application in Tissue Repair and Engineering

Introduction: Tissue engineering is the repair and replacement of damaged tissues and requires a combination of cells, growth factor and porous scaffolds. Scaffolds, as one of the main components in tissue engineering, are used as a template for tissue regeneration and induction and guidance of growth of the new and biologically active tissues. An ideal scaffold in tissue engineering, imitating...

full text

Electrospun nanofibrous structure: a novel scaffold for tissue engineering.

The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications. Electrospinning is a process whereby ultra-fine fibers are formed in a high-voltage electrostatic field. The elect...

full text

Shear Mechanics of Electrospun Scaffold for Annulus Fibrosus Tissue Engineering

INTRODUCTION Engineering functional replacements for the annulus fibrosus (AF) is contingent upon successful replication of anatomic form and mechanical function. Recently, our group and others have demonstrated the utility of electrospun scaffolds for AF tissue engineering [1]. These ordered, nanofibrous scaffolds direct cell alignment and deposition of a functional fibrocartilage matrix [1]. ...

full text

3D conductive nanocomposite scaffold for bone tissue engineering

Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethy...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023