Mahdi Ghorbani
Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
[ 1 ] - Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
[ 2 ] - Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
[ 3 ] - Effect of Beta Particles Spectrum on Absorbed Fraction in Internal Radiotherapy
Objective(s): The purpose of this research is to study the effect of beta spectrum on absorbed fraction ( ) and to find suitable analytical functions for beta spectrum absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution for several radionuclides that are commonly used in nuclear medicine.Methods: In order to obtain the beta particle absorbed fraction, Monte Carlo...
[ 4 ] - Development of a Phase Space Generator software for Medical Linear Accelerator Applications
Introduction: During the last decades, simulation of radiation therapy treatment conditions in treatment room for studying with more details in comparison with treatment planning system (TPS) is taken into consideration. The most problem with starting these kind of researches is the geometry of Medical linacs and verification of the accelerators. Therefore, researchers tried to...
[ 5 ] - Designing Optimal Bias Voltage for Radiotherapy Diamond Dosimeter
Introduction: Recent developments of radiotherapy techniques, require high accuracy detectors to determine the delivered dose in a small area. Chemical vapor deposition (CVD) or naturally growth diamond detectors which are commercially available are good candidates for this purpose. In these detectors two electrodes with high different electrical potential are deposited on both...
[ 6 ] - In vitro study of radiosensitization of PLGA-SPION nanoparticles loaded with Gemcitabine
Introduction: To increase the radiation therapy efficiency, two approaches have been employed which include increasing the dose delivery or modifying the biological response to ionizing radiation. This study aimed to modify the biological response to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Materials and Methods:</str...
[ 7 ] - (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
[ 8 ] - Study of multifunctional PLGA-SPION nanoparticles loaded with Gemcitabine as radiosensitizer
Abstract This study aimed to modify the biological response of cells to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared and used with gemcitabine (Gem). These two agents were encapsulated simultaneously into poly (D, L-lactic-co-glycolic acid) (PLGA) to form multifunc...
[ 9 ] - Determination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources
Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachyt...
[ 10 ] - Dose Calculation Accuracy of Radiotherapy Treatment Planning Systems in Out-of-Field Regions
[ 11 ] - An Investigation to Determine an Optimum Protective Garment Material in Nuclear Medicine
Aim: The aim of this study is to find an optimum material to protect garment for protection against 99Tcm radionuclide.Materials and Methods: Monte Carlo simulation code was applied to investigate radiation attenuation of 13 shielding materials including: Ba, gray Sn, white Sn, Sb, Bi, Bi2O3, BaSO4, Sn/W, Sb/W, Pb and W with thicknesses of 0.5 and 1 mm to determine an optimum protective garment...
[ 12 ] - Benchmarking of Siemens Linac in Electron Modes: 8-14 MeV Electron Beams
Introduction: Radiation therapy using electron beams is a promising method due to its physical dose distribution. Monte Carlo (MC) code is the best and most accurate technique for forespeaking the distribution of dose in radiation treatment of patients.Materials and Methods: We report an MC simulation of a linac head and depth dose on central axis, along with profile calculations. The purpose o...
[ 13 ] - Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy
Background: One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment.Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Methods: Simulations were performed using MCNPX Monte...
[ 14 ] - A Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays
Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed.Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs) in the tumor.Method...
[ 15 ] - Monte Carlo Simulation of Siemens Primus plus Linac for 6 and 18 MV Photon Beams
Objective: The aim of the present study is to simulate 6 MV and 18 MV photon beam energies of a Siemens Primus Plus medical linear accelerator (Linac) and to verify the simulation by comparing the results with the measured data.Methods: The main components of the head of Siemens Primus Plus linac were simulated using MCNPX Monte Carlo (MC) code. To verify the results, experimental data of perce...
[ 16 ] - Comparison of EBT and EBT3 RadioChromic Film Usage in Parotid Cancer Radiotherapy
Background: EBT and EBT3 radioChromic films have been used in radiotherapy dosimetry for years.Objective: The aim of the current study is to compare EBT and EBT3 radioChromic films in dosimetry of radiotherapy fields for treatment of parotid cancer.Methods: Calibrations of EBT and EBT3 films were performed with identical setups using a 6 MV photon beam of a Siemens Primus linac. Skin dose was m...
[ 17 ] - Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy
Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (ske...
[ 19 ] - Dental Materials Effect in Neutron Contamination: Electron Mode of a Linac
Background: Neutron contamination is produced in electron beams of linac when tooth or dental materials are located in the path of beam. Objective: This study aims to determine the neutron dose contamination from different dental restoration materials in electron mode of a linac. Material and Methods: In this experimental study, the neutron dose contamination was calculated in the p...
Co-Authors