XRF analysis of coal bioleaching by chemolithoheterotrophic Alicyclobacillus HRM5 and chemolithoautotrophic Acidithiobacillus ferrooxidans

Authors

  • G. Emtiazi Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran & Department of Biotechnology, Faculty of Biological Science and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
  • Z. Etemadifar Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
Abstract:

Most studies on sulfur bioleaching from coal depend on an autotrophic microorganism with a low growth and a long leaching time. For this reason, heterotrophic heat and acidic pH-resistant Alicyclobacillus was used as the growing and resting cells for the sulfur and iron removal from coal. The results obtained were analyzed by XRF. The data showed that 26.71% of sulfur was removed by Alicyclobacillus in a few days; however, 49.07% of sulfur was removed by Acidithiobacillus in 30 days. This was interesting since the leachings of zinc, strontium, titanium, and iron by Alicyclobacillus, obtained in a few days, were almost the same as the leachings by Acidithiobacillus in 30 days. The results obtained also showed that the Alicyclobacillus cells growing at 55 ˚C removed most of the coal impurities without any change in the carbon content of this fuel. To the best of our knowledge, coal leaching by Alicyclobacillus is reported for the first time.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the ...

full text

Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. How...

full text

Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximat...

full text

Cytochromes c of Acidithiobacillus ferrooxidans.

The chemolithoautotrophic Gram-negative bacterium Acidithiobacillus ferrooxidans is versatile and can grow on a number of electron donors and acceptors. In the A. ferrooxidans ATCC 23270 genome, computer analysis identified 11 genes encoding putative cytochromes c. At least eight putative cytochromes c were differentiated on gels in ATCC 33020 cells grown on ferrous iron or sulfur. All these cy...

full text

Bioleaching and Kinetic Investigation of WPCBs by A. Ferrooxidans, A. Thiooxidans and their Mixtures

Bioleaching was used to mobilize Cu, Zn and Ni from waste printed circuit boards (WPCBs) and eliminate hazardous metal species from these wastes. Pulp density (PD) and medium culture are two effective factors which have been optimized in this paper. The bacteria Acidithiobacillus ferrooxidans (A. ferrooxidans) and Acidithiobacillus thiooxidans (A. thiooxidans) and their mixture were grown and a...

full text

Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans.

The tolerance and bioremoval of dimethylarsinic acid (DMA(V)) by Acidithiobacillus ferrooxidans (A. ferrooxidans) were investigated here. The inhibitory concentration (IC) of DMA(V) was determined for A. ferrooxidans. The effects of various parameters such as pH, contact time, initial DMA(V) concentration, biosorbent dose and temperature were systematically examined to study the biosorption pro...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 3

pages  559- 566

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023