Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search
Authors
Abstract:
A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production management, games theory, and resources allocation in multi-agent systems. This has motivated the quest for efficient approximate algorithms both in terms of solution quality and computational time. This paper proposes a hybrid Ant Colony Optimization with a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm for solving Winner Determination Problem (WDP) in combinatorial auctions. Our proposed MNLS algorithm uses the fact that using various neighborhoods in local search can generate different local optima for WDP and that the global optima of WDP is a local optima for a given its neighborhood. Therefore, proposed MNLS algorithm simultaneously explores a set of three different neighborhoods to get different local optima and to escape from local optima. The comparisons between ACO-MNLS, Genetic Algorithm (GA), Memetic Algorithm (MA), Stochastic Local Search (SLS), and Tabu Search (TS) on various benchmark problems confirm the efficiency of ACO-MNLS in the terms of solution quality and computational time.
similar resources
Approaches to winner determination in combinatorial auctions
Combinatorial auctions, i.e. auctions where bidders can bid on combinations of items, tend to lead to more eecient allocations than traditional auctions in multi-item auctions where the agents' valuations of the items are not additive. However, determining the winners so as to maximize revenue is NP-complete. First, existing approaches for tackling this problem are reviewed: exhaustive enu-mera...
full textComparing winner determination algorithms for mixed multi-unit combinatorial auctions
In this thesis three different approaches to the Winner Determination Problem (WDP) for Mixed Multi-Unit Combinatorial Auctions (MMUCA) are explored. The first, due to [Cerquides et al., 2007] is based on a traditional integer programming approach. The second, due to [Uckelman and Endriss, 2007] is based on constraint programing and the third is based on a division of the original problem in tw...
full textComputationally-efficient winner determination for mixed multi-unit combinatorial auctions
Mixed Multi-Unit Combinatorial Auctions offer a high potential to be employed for the automated assembly of supply chains of agents offering goods and services. Their winner determination problem is an NP-hard problem that can be mapped into an integer program. Nonetheless, the computational cost of the current solution hinders the application of mixed multi-unit combinatorial auctions to reali...
full textANT COLONY SEARCH METHOD IN PRACTICAL STRUCTURAL OPTIMIZATION
This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with pr...
full textA New Local Search Based Ant Colony Optimization Algorithm for Solving Combinatorial Optimization Problems
Ant Colony Optimization (ACO) algorithms are a new branch of swarm intelligence. They have been applied to solve different combinatorial optimization problems successfully. Their performance is very promising when they solve small problem instances. However, the algorithms’ time complexity increase and solution quality decrease for large problem instances. So, it is crucial to reduce the time r...
full textMy Resources
Journal title
volume 5 issue 2
pages 169- 181
publication date 2017-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023