Why do Bimetallic Clusters have more Chemical Reactivity? Study the VnNim (2 ≤ n + m ≤ 6) Clusters as the Nano Species
Authors
Abstract:
This article gives you proof that bimetallic transition metal clusters with the difference in electronegativity are better catalysts than monoatomic one. To prove this fact, a study of ethylene adsorption on bimetallic clusters vanadium-nickel VnNim (2≤n+m≤6) has been demonstrated. Our result shows that hardness has a quite good linear correlation with the non-Lewis of VnNi (n=1-5) cluster (R2=0.99). This finding is important, because this is the first time in literature that presents an orbital explanation for hardness. It is possible to see the results of both nickel doped in vanadium cluster and also vanadium doped in nickel cluster. The maximum interaction for these species is for one nickel substituted alloy, VnNi (n=1-5). This finding corresponds to the lowest energy gap between HOMO of bimetallic clusters and LUMO of ethylene, according to Fukui equation of reactivity. A successful demonstration has been performed by extrapolation of theoretical results to predict the best mixing of two metals which reveals that V8Ni cluster is the best that is in accordance with the experimental results of mixing vanadium with nickel as catalysis in industry. We have also demonstrated that the larger bimetallic cluster has more conductivity and reactivity which is the demonstration of nano character.
similar resources
Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
full textInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
full textQTAIM study of Bonding and Structure of Pure Atomic Clusters,Part III : Nn Clusters (n= 4,6)
DFT and QTAIM computations have been performed on numbers of pure nitrogen cluster speciesi.e. Nn (n = 4, 6) for investigating the structure and bonding. This study is critical since thesemolecules have been nominated as the good synthetic targets of High Energy Materials (HEM).0nthe other hand the decomposition mechanism is closely depends on the bonding pattern. Thislatter concept was searche...
full textWhy Do Only Some Galaxy Clusters Have Cool Cores?
Flux-limited X-ray samples indicate that about half of rich galaxy clusters have cool cores. Why do only some clusters have cool cores while others do not? In this paper, cosmological N-body + Eulerian hydrodynamic simulations, including radiative cooling and heating, are used to address this question as we examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. ...
full textAb Initio Study of the chemical reactivity of metal clusters and metal oxide clusters
In this work the transition metal and metal oxide clusters has been investigated with the aim of gaining a better insight into the mechanisms which govern their reactivity. The theoretical study of the structural and energetic properties of the clusters has been carried out within the framework of the density functional theory by means of a new family of gradient-corrected hybrid density functi...
full textinvestigation of structural and electronic properties of small au n cu m (n+m≤5) nano-clusters for oxygen adsorption
in this study, the structures, the ir spectroscopy, and the electronic properties of auncum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (gga) and exchange correlation density functional theory (dft). the study of an o2-auncum system is important to identify the promotion effects of each of the two...
full textMy Resources
Journal title
volume 7 issue 4
pages 715- 729
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023