Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces
Authors
Abstract:
In this paper, we prove some theorems related to properties of generalized symmetric hybrid mappings in Banach spaces. Using Banach limits, we prove a fixed point theorem for symmetric generalized hybrid mappings in Banach spaces. Moreover, we prove some weak convergence theorems for such mappings by using Ishikawa iteration method in a uniformly convex Banach space.
similar resources
On the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex Banach spaces
Some algorithms for nding common xed point of a family of mappings isconstructed. Indeed, let C be a nonempty closed convex subset of a uniformlyconvex Banach space X whose norm is Gateaux dierentiable and let {Tn} bea family of self-mappings on C such that the set of all common fixed pointsof {Tn} is nonempty. We construct a sequence {xn} generated by the hybridmethod and also we give the cond...
full textWeak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces
The purpose of this paper is to establish some weak convergence theorems of modified two-step iteration process with errors for two asymptotically quasi-nonexpansive non-self mappings in the setting of real uniformly convex Banach spaces if E satisfies Opial’s condition or the dual E∗ of E has the Kedec-Klee property. Our results extend and improve some known corresponding results from the exis...
full texton the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex banach spaces
some algorithms for nding common xed point of a family of mappings isconstructed. indeed, let c be a nonempty closed convex subset of a uniformlyconvex banach space x whose norm is gateaux dierentiable and let {tn} bea family of self-mappings on c such that the set of all common fixed pointsof {tn} is nonempty. we construct a sequence {xn} generated by the hybridmethod and also we give the ...
full textConvergence Theorems for Infinite Family of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces
and Applied Analysis 3 In this paper, we generalize and modify the iteration of Abbas et al. 7 from two mapping to the infinite family mappings {Ti : i ∈ N} of multivalued quasi-nonexpansive mapping in a uniformly convex Banach space. Let {Ti} be a countable family of multivalued quasi-nonexpansive mapping from a bounded and closed convex subset K of a Banach space into P K with F : ⋂∞ i 1 F Ti...
full textConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
full textStrong Convergence Theorems for Generalized Variational Inequalities and Relatively Weak Nonexpansive Mappings in Banach Spaces
In this paper, we introduce an iterative sequence by using a hybrid generalized f−projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational ...
full textMy Resources
Journal title
volume 43 issue 3
pages 617- 627
publication date 2017-06-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023