Wave Propagation in Sandwich Panel with Auxetic Core

Authors

  • D Qing-Tian School of Science, Chang’an University, Xi’an, China
  • Y Zhi-Chun School of Aeronautics, Northwestern Polytechnical University
Abstract:

Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse range of applications, including as core material in curved sandwich panel composite components, radome applications, directional pass band filters, adaptive and deployable structures, filters and sieves, seat cushion material, energy absorption components, viscoelastic damping materials and fastening devices etc.In this paper, the characteristic of wave propagation in sandwich panel with auxetic core is analyzed. A three-layer sandwich panel is considered which is discretized in the thickness direction by using semi-analytical finite element method. Wave propagation equations are obtained through some algebraic manipulation and applying standard finite element assembling procedures. The mechanical properties of auxetic core can be described by the geometric parameters of the unit cell and mechanical properties of the virgin core material. The characteristics of wave propagation in sandwich panel with conventional hexagonal honeycomb core and re-entrant auxetic core are discussed, and effects of panel thickness, geometric properties of unit cell on dispersive curves are also discussed. Variations of Poisson’s ratio and core density with inclined angle are presented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hierarchical Corrugated Core Sandwich Panel Concepts

The transverse compression and shear collapse mechanisms of a second order, hierarchical corrugated truss structure have been analyzed. The two competing collapse modes of a first order corrugated truss are elastic buckling or plastic yielding of the truss members. In second order trusses, elastic buckling and yielding of the larger and smaller struts, shear buckling of the larger struts, and w...

full text

Wave propagation in a sandwich structure

The propagation of elastic waves in a sandwich structure with two thin stiff face-plates and a thick compliant core is considered in this paper. A complete description of the dispersion relation with no restrictions on frequency and wavelength is provided. This is accomplished by transforming the wave equation to a Hamiltonian system and then using a transfer matrix approach for solving the Ham...

full text

Deflection and Free Vibration of Sandwich Panel with Honeycomb Core on Winkler Elastic Foundation

In this paper deflection and free vibration of sandwich panel is studied. The core of Sandwich panels is made of hexagonal honeycomb and faces are made of two different materials of Carbon Fiber Reinforced Plastic and K-aryl/epoxy covering. The governing equations are deduced from the First order Sheer Deformation Theory (FSDT) and they are solved using Generalized Differential Quadrature Metho...

full text

Improving the Performance of the Sandwich Panel with the Corrugated Core Filled with Metal Foam: Mathematical and Numerical Methods

A new type of composite structure with a metal foam is reinforced by the metal corrugated core, called metal-foam-filled sandwich panel with a corrugated or V-frame core, is modelled, simulated, and studied in this article. All types of samples with different relative densities of the foam are tested and analyzed under the drop hammer load. The sandwich panel included two aluminium face-sheet, ...

full text

Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geo...

full text

Non-linear Response and Dynamic Buckling Analysis of a Cylindrical Sandwich Panel with a Flexible Core under Blast Loading

In this paper, three-dimensional displacement response of a cylindrical sandwich panel with compressible core under the action of dynamic pulse loading is addressed using the extended high order sandwich panel theory. Also, local dynamic pulse buckling of facesheets is studied by considering the Budiansky-Roth buckling criterion. It is assumed that the sandwich panels consist of orthotropic fac...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 4

pages  393- 402

publication date 2010-12-31

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023