Watershed conservation prioritization using geomorphometric and land use-land cover parameters
Authors
Abstract:
Geomorphometric features and land use/land cover are essential in the context of watershed prioritization for resources conservation and protection. Watersheds in tropical regions like the Philippines are under threat of degradation due to the combined effects of uncontrolled agricultural activities in the uplands and frequently increasing erosive precipitations brought about by climate change. Watershed managers are challenged with these pressing issues and concerns because most watersheds have no sufficient data as a basis for decision making. This paper presents the method of analyzing the different geomorphometric features and the existing land use or land cover to assess the propensity of the watershed against erosion so that areas needing immediate treatment can be prioritized. Arbitrarily, fourteen subwatersheds coded as SW1 to SW14 were delineated using a digital elevation model and geographic information system tool. Geomorphometric features categorized as areal aspect, relief features, and channel morphology parameters were generated and analyzed. Parameters having direct and inverse effect to erosion risk was used as the criteria in the ranking process. Land use/land cover was added to geomorphometric parameters to come up with compound values for final prioritization. Results showed that SW13, SW14, and SW4 were classified under very high priority implying focus for appropriate management actions while SW10, SW6, and SW7 were classified under very low priority suggesting favorable environmental condition in these areas. The study provides significant information helpful to watershed managers and planners especially in crafting a plan for integrated watershed management wherein programs and projects implementation have to be prioritized.
similar resources
Watershed Land Cover/Land Use Mapping Using Remote Sensing and Data Mining in Gorganrood, Iran
The Gorganrood watershed (GW) is experiencing considerable environmental change in the form of natural hazards and erosion, as well as deforestation, cultivation and development activities. As a result of this, different types of Land Cover/Land Use (LCLU) change are taking place on an intensive level in the area. This research study investigates the LCLU conditions upstream of this watershed f...
full textLand use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model
Analyzing the process of land use and cover changes during long periods of time and predicting the future changes is highly important and useful for the land use managers. In this study, the land use maps in the Ardabil plain in north-west part of Iran for four periods (1989, 1998, 2009 and 2013) are extracted and analyzed through remote sensing technique, using the land-sat satellite images. T...
full textLand cover land use mapping and change detection analysis using geographic information system and remote sensing
Land cover/land use categories are relevant components in land management. Understanding how land cover/land use change over time is necessary to assess the consequences of humans and natural stressors on the earth’s environment and resources. The aim of the study was to map and monitor the spatial and temporal change in land cover/land use for the periods of 1977, 1991 and 2016 and to predict ...
full textModeling Land-use and Land-cover Change
Models are used in a variety of fields, including land change science, to better understand the dynamics of systems, to develop hypotheses that can be tested empirically, and to make predictions and/or evaluate scenarios for use in assessment activities. Modeling is an important component of each of the three foci outlined in the science plan of the Land-use and -cover change (LUCC) project (Tu...
full textquantification of underground water quality parameters using land use/cover (ghareh-su watershed, golestan province)
the aim of this study is to investigate underground water quality parameters in gorganrud river basin and their connection with aboveground conditions using gis and artificial neural networks. in order to prepare a land use map of the area, liss iii image of irs satellite of the year 2008 was used in a maximum likelihood classification. the results revealed that there was a significant correlat...
full textMy Resources
Journal title
volume 5 issue 3
pages 279- 294
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023