Water use patterns of forage cultivars in the North China Plain
Authors
Abstract:
Water shortage is the primary limiting factor for crop production and long-term agricultural sustainability of the North China Plain. Forage cultivation emerged recently in this region. A fiver-year field experiment studies were conducted at Yucheng Integrated Experiment Station to quantify the water requirement and water use efficiency of seven forage varieties under climate variability, that is five annuals, i.e., ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass (Sorghum biolor × Sorghum Sudanense c.v.), ensilage corn (Zea mays L.), prince`s feather (Amaranthus paniculatus L.) and two perennials alfalfa (Medicago sativa L.) and cup plant (Silphium perfoliatum L.). Average ET for five annual varieties ranged from 333 to 371 mm, significantly lower than that of the perennial varieties. ET of alfalfa is 789 mm, which is higher than that of cup plant. Ryegrass and triticale need 1.5 to 2.0 mm water per day, while others 2.9-4.4 mm. Ensilage corn and Sorghum hybrid sudangrass performed better as their irrigation demand is smaller in the dry seasons than others. Ryegrass needs 281 mm irrigation requirement, which is higher than triticale in dry years. Prince’s feather is sensitive to climate change and it can be selected when rainfall is greater than 592.9 mm in the growing season. Mean WUE for prince’s feather is 20 Kg ha-1 mm-1, for ensilage corn is 41 Kg ha-1 mm-1 and others is close to 26 Kg ha-1 mm-1. Our experiments indicate that excessive rain will reduce the production of alfalfae. The results of this experiment have implications for researchers and policy makers with water management strategy of forage cultivars and it also very useful in addressing climate change impact and adaptation issues.
similar resources
Characteristics of water consumption in water-saving winter wheat and effects on the utilization of subsequent summer rainfall in the North China Plain
Winter wheat (Triticum aestivum L.) grows in dry season but summer maize (Zea mays L.) coincides with rainfall in the North China Plain (NCP). Increasing rainfall use efficiency and harmonizing its utilization between the two species is an effective way to mitigate impact on groundwater deriving from wheat irrigation. One to four times water supply (W1, to W4) were employed in wheat, three wate...
full textWater resources and water use efficiency in the North China Plain: Current status and agronomic management options
Serious water deficits and deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, identifies the effects of soil management, irrigation timing and amounts, and crop genetic improvement on water use efficiency (WUE), and then discusses knowledge gaps and ...
full textEvaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain
The North China Plain is one of the most important grain production regions in China, but is facing serious water shortages. To achieve a balance between water use and the need for food self-sufficiency, new water efficient irrigation strategies need to be developed that balance water use with farmer net return. The Crop Environment Resource Synthesis Wheat (CERES-Wheat model) was calibrated an...
full textIrrigation methods affect wheat flag leaf senescence and chlorophyll fluorescence in the North China Plain
The water resource shortage in North China Plain is an increasing threat to the sustainabilityof wheat (Triticum aestivum L.) production. A two-year field experiment was conducted toexamine the effects of two supplemental irrigation (SI) methods on wheat flag leaf senescence,chlorophyll fluorescence and grain yield. The following field treatments were conducted:no irrigation (W0); SI with 60 mm...
full textImpact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
full textMy Resources
Journal title
volume 5 issue 2
pages 181- 194
publication date 2012-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023