Voltage Regulation of a Negative Output Luo Converter Using a PD-PI Type Sliding Mode Current Controller

Authors

  • A. Goudarzian Department of Electrical Engineering, Faculty of Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • A. Khosravi Department of Electrical Engineering, Faculty of Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Abstract:

This paper describes a new design for direct sliding mode method with a high switching frequency using the PD-PI type sliding surface applied to a negative output Luo converter worked in continuous current mode for applications required constant power source such as aerospace applications, medical equipment and etc. Because of the output power and line changes, the converter model is also nonlinear and time varying. In addition, losses dissipation and voltage drops caused a deviation between the theoretical and actual output voltage of this converter. For improvement of the converter performance along with the current and voltage regulations, a nonlinear controller is required. This suggested controller is proper to inherently variable structure of the converter and can cope with nonlinearities associated with its model. The goal is to ensure a satisfactory response for the converter. The practical results showed that the proposed strategy helps to eliminate the voltage error along with continuous current operation of the converter in very light loads and high switching frequency in different operating points.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Design and Implementation of a Constant Frequency Sliding Mode Controller for a Luo Converter

In this study, a robust controller for voltage regulation of the POESLL converter worked in continuous conduction mode is presented. POESLL converter is a DC/DC converter with a high voltage gain. DC/DC converters are used in telecommunication systems, power sources and industrial applications. Owing to the switching operation, the structure of the POESLL converter is highly non-linear. In addi...

full text

Stabilization and Robustification of Negative Output Superlift Luo Converter Using Sliding Mode Control Approach

This paper depicts the design and implementation of non-linear control approach called sliding mode control for Negative Output Elementary Superlift Luo converter (NOESLLC).DC-DC converters finds its applications majorly in all power electronic industries nowadays. In order to provide a good regulation of output in these converters it is mandatory to make them operate in the closed loop mode us...

full text

Nonlinear Control for Positive Output Super Lift Luo Converter in Stand Alone Photovoltaic System

This paper proposes a stand-alone photovoltaic (PV) system based on a DC-DC positive output super lift Luo (POSLL) converter. A conventional sliding mode control, a sliding mode controller using a simple sign function and a linear controller using proportional integrator (PI) are used for the control of the PV panel voltage and POSLL converter inductor current and these methods are compared tog...

full text

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

full text

PI Control for Positive Output Elementary Super Lift Luo Converter

The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control cap...

full text

Robust Optimal Speed Tracking Control of a Current Sensorless Synchronous Reluctance Motor Drive using a New Sliding Mode Controller

This paper describes the robust optimal incremental motion control of a current  sensorless synchronous reluctance motor (SynRM), which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic (LQ) feedback control method and sliding mode control (SMC). A novel sliding switching surface is employed first, that makes the states of the Sy...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 2

pages  277- 285

publication date 2019-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023