Viscous Dissipation Impact on Free Convection Flow of Cu-water Nanofluid in a Circular Enclosure with Porosity Considering Internal Heat Source
Authors
Abstract:
In this work, free convection of Cu-water nanofluid in an enclosure by considering internally heat generated in the porous circular cavity and the impacts of viscous dissipation are numerically evaluated by control volume finite element method (CVFEM). The outer and inner sides of the circular porous enclosure are maintained at a fixed temperature while insulating the other two walls. The impacts of diverse effective parameters including the Rayleigh number, viscous dissipation, and nanofluid concentration on features of heat transfer and fluid flow are examined. Moreover, a new correlation for the average Nusselt number is developed according to the study’s active parameters. It can be deduced by the results that the maximum value of the temperature is proportional to the viscous dissipation parameter.
similar resources
Influence of Magnetic Wire Positions on free convection of Fe3O4-Water nanofluid in a Square Enclosure Utilizing with MAC Algorithm
The augment of heat transfer and fluid of buoyancy-driven flow of Fe3O4-Water nanofluid in a square cavity under the influence of an external magnetic field is studied numerically. Cold temperature is applied on the side (vertical) walls and high temperature is imposed on the bottom wall while the top wall is kept at thermally insulated. The governing non-dimensional differential equations are ...
full textCFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
full textFinite element analysis of viscoelastic nanofluid flow with energy dissipation and internal heat source/sink effects
full text
Forced Convection Boundary Layer Magnetohydrodynamic Flow of Nanofluid over a Permeable Stretching Plate with Viscous Dissipation
Forced convection boundary layer magnetohydrodynamic flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissipation are taken into account. The nanofluid model includes Brownian motion and thermophoresis effects. The governing momentum, energy, and nanofluid solid volume fraction equations are solved numerically using an ...
full textForced Convection Boundary Layer Mhd Flow of Nanofluid over a Permeable Stretching Plate with Viscous Dissipation
a Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran b Department of Mechanical Engineering, University of British Columbia Vancouver, Canada Forced convection boundary layer magneto-hydrodynamic (MHD) flow of a nanofluid over a permeable stretching plate is studied in this paper. The effects of suction-injection and viscous dissi 1 pation are taken into accoun...
full textHeat and mass transfer of nanofluid over a linear stretching surface with Viscous dissipation effect
Boundary Layer Flow past a stretching surface with constant wall temperature, of a nanofluid is studied for heat transfer characteristics. The system of partial differential equations describing such a flow is subjected to similarity transformations gives rise to a boundary value problem involving a system of ordinary differential equations. This system is solved by a shooting method. Effect of...
full textMy Resources
Journal title
volume 5 issue 4
pages 717- 726
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023