Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
Authors
Abstract:
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
similar resources
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome identities of degenerate Fubini polynomials arising from differential equations
Recently, Kim et al. have studied degenerate Fubini polynomials in [T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864]. Jang and Kim presented some identities of Fubini polynomials arising from differential equations in [G.-W. Jang, T. Kim, Adv. Studies Contem. Math., 28 (2018), to appear]. In this paper, we drive differential equations from the generating ...
full textOn the Oscillatory Integration of Some Ordinary Differential Equations
Conditions are given for a class of nonlinear ordinary differential equations x′′ + a(t)w(x) = 0, t ≥ t0 ≥ 1, which includes the linear equation to possess solutions x(t) with prescribed oblique asymptote that have an oscillatory pseudo-wronskian x′(t)− x(t) t .
full textSolutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations
This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...
full textMy Resources
Journal title
volume 16 issue 1
pages 77- 95
publication date 2021-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023