Very cleanness of generalized matrices

author

  • Y. Kurtulmaz Department of Mathematics‎, ‎Bilkent University, Ankara‎, ‎Turkey.
Abstract:

An element $a$ in a ring $R$ is very clean in case there exists‎ ‎an idempotent $ein R$ such that $ae = ea$ and either $a‎- ‎e$ or $a‎ + ‎e$ is invertible‎. ‎An element $a$ in a ring $R$ is very $J$-clean‎ ‎provided that there exists an idempotent $ein R$ such that $ae =‎ ‎ea$ and either $a-ein J(R)$ or $a‎ + ‎ein J(R)$‎. ‎Let $R$ be a‎ ‎local ring‎, ‎and let $sin C(R)$‎. ‎We prove that $Ain K_s(R)$ is‎ ‎very clean if and only if $Ain U(K_s(R))$‎, ‎$Ipm Ain U(K_s(R))$‎ ‎or $Ain K_s(R)$ is very J-clean‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

GENERALIZED REGULAR FUZZY MATRICES

In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.

full text

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

full text

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

full text

generalized regular fuzzy matrices

in this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. this leads to the characterization of a matrix for which the regularity index and the index are identical. further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.

full text

Generalized modularity matrices

Various modularity matrices appeared in the recent literature on network analysis and algebraic graph theory. Their purpose is to allow writing as quadratic forms certain combinatorial functions appearing in the framework of graph clustering problems. In this paper we put in evidence certain common traits of various modularity matrices and shed light on their spectral properties that are at the...

full text

On Generalized Transitive Matrices

Transitivity of generalized fuzzy matrices over a special type of semiring is considered. The semiring is called incline algebra which generalizes Boolean algebra, fuzzy algebra, and distributive lattice. This paper studies the transitive incline matrices in detail. The transitive closure of an incline matrix is studied, and the convergence for powers of transitive incline matrices is considere...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 5

pages  1457- 1465

publication date 2017-10-31

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023