Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Authors
Abstract:
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definition and optimization of nonlinear systems. The proposed model involves structure identification and also a parameter tuning phase to be adapted for modeling of an arbitrary system. The proposed structure and the learning algorithm are validated by comparing with some other most commonly used alternatives. The simulation shows the performance and adaptability of the proposed model in approximating multivariate nonlinear mathematics functions.
similar resources
A Wavelet Neural Network for Function Approximation and Network Optimization A WAVELET NEURAL NETWORK FOR FUNCTION APPROXIMATION AND NETWORK OPTIMIZATION
A new mapping network combined wavelet and neural networks is proposed. The algorithm consists of two process: the selfconstruction of networks and the minimization of errors. In the first process, the network structure is determined by using wavelet analysis. In the second process, the approximation errors are minimized. The merits of the proposed network are as follows: network optimization, ...
full textWavelet Neural Network with Random Wavelet Function Parameters
The training algorithm of Wavelet Neural Networks (WNN) is a bottleneck which impacts on the accuracy of the final WNN model. Several methods have been proposed for training the WNNs. From the perspective of our research, most of these algorithms are iterative and need to adjust all the parameters of WNN. This paper proposes a one-step learning method which changes the weights between hidden la...
full textEvolutionary Wavelet Neural Network for large dimension function estimation
This paper describes a new method for constructing wavelet neural network in order to improve the accuracy of prediction for multi-dimensional function spaces. An algorithm is developed using the concept of evolutionary search in wavelet neural network. It helps in decreasing the computational effort needed for building the wavelet neural network. Several modifications to wavelet neural network...
full textA Wavelet Neural Network for Fun tion Approximation and Network Optimization A WAVELET NEURAL NETWORK FOR FUNCTION APPROXIMATION AND NETWORK OPTIMIZATION
full text
STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
full textFunction Approximation Using Robust Wavelet Neural Networks
Wavelet neural networks (WNN) have recently attracted great interest, because of their advantages over radial basis function networks (RBFN) as they are universal approximators but achieve faster convergence and are capable of dealing with the so-called “curse of dimensionality.” In addition, WNN are generalized RBFN. However, the generalization performance of WNN trained by least-squares appro...
full textMy Resources
Journal title
volume 28 issue 10
pages 1423- 1429
publication date 2015-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023