$(varphi_1, varphi_2)$-variational principle
Authors
Abstract:
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Math. Anal. Appl. 47 (1974) 323--353], that of Borwein-Preiss [A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987) 517--527] and that of Deville-Godefroy-Zizler [Un principe variationel utilisant des fonctions bosses, C. R. Acad. Sci. (Paris). Ser.I 312 (1991) 281--286] and [A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993) 197--212].
similar resources
Variational Principle
Variational principle for probabilistic learning Yet another justification More simplification of updates for mean-field family Examples Dirichlet Process Mixture On minimization of divergence measures Energy minimization justifications Variational learning with exponential family Mean parametrization and marginal polytopes Convex dualities The log-partition function and conjugate duality Belie...
full textVariational Principle for
We show that some measures suuering from the so-called Renormalization Group pathologies satisfy a variational principle and that the corresponding limit of the pressure, with boundary conditions in a set of measure 1, is proportional to the pressure of the Ising model.
full textOn the Variational Principle
The variational principle states that if a differentiable functional F attains its minimum at some point zi, then F’(C) = 0; it has proved a valuable tool for studying partial differential equations. This paper shows that if a differentiable function F has a finite lower bound (although it need not attain it), then, for every E > 0, there exists some point u( where 11 F’(uJj* < l , i.e., its de...
full textParametric variational principle and residuality
We prove a parametric version of a smooth convex variational principle with constraints using a Baire category approach. We examine in depth the necessity of the assumptions of our variational principle by providing counterexamples.
full textA Variational Principle for Permutations
We define an entropy function for scaling limits of permutations, called permutons, and prove that under appropriate circumstances, both the shape and number of large permutations with given constraints are determined by maximizing entropy over permutons with those constraints. We also describe a useful equivalent version of permutons using a recursive construction. This variational principle i...
full textMy Resources
Journal title
volume 8 issue 2
pages 251- 261
publication date 2017-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023