Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data

author

  • Hanieh Panahi Department of Mathematics and Statistics, Lahijan branch, Islamic Azad University, Lahijan, Iran
Abstract:

The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the important criteria for financial institution risk management. The maximum likelihood, moment, percentiles and maximum product of spacing methods are considered to estimate the unknown parameters. The data of the insurance stock prices is analyzed for comparing the proposed methods in VaR evaluation. An important implication of the present study is that the Kappa distribution can be considered as a loss distribution for the VaR estimation. Also, it is observed that the maximum likelihood estimator, in contrast to other estimators, provides smallest VaR in the proposed stock prices data.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

high volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company

در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...

15 صفحه اول

Data-analytic approaches to the estimation of Value-at-Risk

Value at Risk measures the worst loss to be expected of a portfolio over a given time horizon at a given confidence level. Calculation of VaR frequently involves estimating the volatility of return processes and quantiles of standardized returns. In this paper, several semiparametric techniques are introduced to estimate the volatilities . In addition, both parametric and nonparametric techniqu...

full text

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

Value at Risk Estimation

This chapter reviews the recent developments of Value at Risk (VaR) estimation. In this survey, the most available univariate and multivariate methods are presented. The robustness and accuracy of these estimation methods are investigated based on the simulated and real data. In the backtesting procedure, the conditional coverage test (Christoffersen 1998), the dynamic quantile test (Engle and ...

full text

using mgarch to estimate value at risk

in this paper we compared multivariate garch models toestimate value-at-risk. we used a portfolio of weekly indexesincluding tedpix, klse, xu100 during ten years. to estimatevalue-at-risk, first we estimated ccc, dcc of engle, dcc of tseand tsui, dynamic equi correlation models by oxmetrics. then,optimum lags were estimated by minimizing the information criteria.to estimate var, the models accu...

full text

Value at Risk Estimation Using Extreme Value Theory

A common assumption in quantitative financial risk modelling is the distributional assumption of normality in the asset’s return series, which makes modelling easy but proves to be inefficient if the data exhibit extreme tails. When dealing with extreme financial events like the Global Financial Crisis of 2007-2008 while quantifying extreme market risk, Extreme Value Theory (EVT) proves to be a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 14

pages  91- 100

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023