Using multiquadric quasi-interpolation for solving Kawahara equation

Authors

  • K. Shakibi e
  • M. Ghasemimanesh e
  • R. Ezzati s
Abstract:

This article doesn't have abstract

similar resources

Solving partial differential equation by using multiquadric quasi-interpolation

In this paper, we use a kind of univariate multiquadric (MQ) quasi-interpolation to solve partial differential equation (PDE). We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the r...

full text

Applying Multiquadric Quasi-Interpolation to Solve KdV Equation

Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic conservation laws and Burgers’...

full text

A numerical solution of a Kawahara equation by using Multiquadric radial basis function

In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.

full text

SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION

In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.  

full text

A Multiquadric Interpolation Method for Solving Initial Value Problems

In this paper, an interpolation method for solving linear diierential equations was developed using multiquadric scheme. Unlike most iterative formula , this method provides a global interpolation formulae for the solution. Numerical examples show that this method ooers a higher degree of accuracy than Runge-Kutta formula and the iterative multistep methods developed by Hyman (1978).

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  111- 123

publication date 2011-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023