Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks

Authors

  • A. Khatibi Bardsiri Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran.
  • F. Keynia Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences; Graduate University of Advanced Technology, Kerman, Iran.
  • S. Roohollahi Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran.
Abstract:

Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire network. This paper proposes a sampling algorithm that equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning automata. Evaluator unit evaluates each edge and then decides whether edge and corresponding node should be added to the sample set. In The proposed algorithm, each main activity graph node is equipped with a simple learning automaton. The proposed algorithm is compared with the best current sampling algorithm that was reported in the Kolmogorov-Smirnov test (KS) and normalized L1 and L2 distances in real networks and synthetic networks presented as a sequence of edges. Experimental results show the superiority of the proposed algorithm.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks

The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...

full text

A new learning automata-based sampling algorithm for social networks

Recently, studying social networks plays a significant role in many applications of social network analysis, from the studying the characterization of network to that of financial applications. Due to the large data and privacy issues of social network services, there is only a limited local access to whole network data in a reasonable amount of time. Therefore, network sampling arises to study...

full text

Irregular cellular learning automata-based algorithm for sampling social networks

Since online social networks usually have quite huge size and limited access, smaller subgraphs of them are often produced and analysed as the representative samples of original graphs. Sampling algorithms proposed so far are categorized into three main classes: node sampling, edge sampling, and topology-based sampling. Classic node sampling algorithm, despite its simplicity, performs surprisin...

full text

Sampling from complex networks using distributed learning automata

A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due ...

full text

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

full text

Influence Maximization in Social Networks using Learning Automata

Influence maximization problem is one of the challenges in online social networks. This problem refers to finding a small set of members of a social network, by activation of whichinformation propagation can be maximized using one of the propagation models such as independent cascade model. For the maximization problem, the greedy algorithm has beenpresented which isclose to optimal response by...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  127- 148

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023