Upper Bound Analysis of Tube Extrusion Process Through Rotating Conical Dies with Large Mandrel Radius

Authors

  • H Haghighat Mechanical Engineering Department, Razi University, Kermanshah
  • M.M Mahdavi Mechanical Engineering Department, Razi University, Kermanshah
Abstract:

In this paper, an upper bound approach is used to analyze the tube extrusion process through rotating conical dies with large mandrel radius. The material under deformation in the die and inside the container is divided to four deformation zones. A velocity field for each deformation zone is developed to evaluate the internal powers and the powers dissipated on all frictional and velocity discontinuity surfaces. By minimization of the total power with respect to the slippage parameter between tube and the die and equating it with the required external power, the extrusion pressure is determined. The corresponding results for rotating conical dies are also determined by using the finite element code, ABAQUS. The analytical results show a good coincidence with the results by the finite element method with a slight overestimation. Finally, the effects of various process parameters such as mandrel radius, friction factor, etc., upon the relative extrusion pressure are studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A generalized upper bound solution for bimetallic rod extrusion through arbitrarily curved dies

In this paper, an upper bound approach is used to analyze the extrusion process of bimetallic rods through arbitrarily curved dies. Based on a spherical velocity field, internal, shearing and frictional power terms are calculated. The developed upper bound solution is used for calculating the extrusion force for two types of die shapes: a conical die as a linear die profile and a streamlined di...

full text

An Upper Bound Solution for Analysis of Twist Extrusion Process with Elliptical Die Cross-section

Twist extrusion process is a rather new route to produce highly strained materials. In this process, severe plastic deformation is applied by large shear strains. In current article, required energy for twist extrusion by use of admissible velocity field together with the upper bound technique is predicted. The proposed model is capable of considering the effect of various parameters such as di...

full text

Analysis of Axisymmetric Extrusion Process through Dies of any Shape with General Shear Boundaries

In this paper, a generalized expression for the flow field in axisymmetric extrusion process is suggested to be valid for any dies and the boundary shapes of the plastic deformation zone. The general power terms are derived and the extrusion force is calculated by applying upper bound technique for a streamlined die shape and exponential functions for shear boundaries. It is shown that assuming...

full text

Upper bound and numerical analysis of cyclic expansion extrusion (CEE) process

Deformation of the material during cyclic expansion extrusion (CEE) is investigated using upper-bound theorem. The analytical approximation of forming loads agrees very well with the FEM results for different amounts of chamber diameter, friction factor and also for lower die angles. However, the difference between analytical and numerical solution increases at higher die angles which are expla...

full text

An Upper Bound Analysis of Sandwich Sheet Rolling Process

In this research, flat rolling process of bonded sandwich sheets is investigated by the method of upper bound. A kinematically admissible velocity field is developed for a single layer sheet and is extended into the rolling of the symmetrical sandwich sheets. The internal, shear and frictional power terms are derived and they are used in the upper bound model. Through the analysis, the rolling ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  191- 203

publication date 2015-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023