Updating finite element model using frequency domain decomposition method and bees algorithm

Authors

  • Shapour Moradi Shahid Chamran University of Ahwaz, Faculty of Engineering, Mechanical Engineering group.
Abstract:

The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and global sensitivity analyses have been performed. The sum of the squared errors between the natural frequencies obtained from operational modal analysis and the finite element method is used to define the objective function. The experimental natural frequencies are determined by frequency domain decomposition technique which is considered as an efficient operational modal analysis method. To verify the accuracy of the proposed algorithm, it is implemented on a three-story structure to update its finite element model. Moreover, to study the efficiency of bees algorithm, its results are compared with those particle swarm optimization and Nelder and Mead methods. The results show that this algorithm leads more accurate results with faster convergence. In addition, modal assurance criterion is calculated for updated finite element model and frequency domain decomposition technique. Moreover, finding the best locations of acceleration and shaker mounting in order to accurate experiments are explained.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

DAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM

This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...

full text

Finite Element Model Updating Using Response Surface Method

Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from the measured results and therefore need to be updated to match the measured data. FE model updating entails tuning the model so that it can better reflect the measured data from the physical structure being modeled 1. One fundamental charact...

full text

Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

1 Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, USA, [email protected] 2 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, [email protected]; [email protected] 3 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, ulrich.lan...

full text

Non-overlapping Domain Decomposition Method and Nodal Finite Element Method

The non-overlapping domain decomposition method is an efficient approach for solving time harmonic scattering wave problems. It is used here to reduce large size systems solution to that of several systems of small size and to construct efficient procedures to couple finite element and boundary element methods. The lack of a satisfactory treatment of the so-called cross-points, nodes being shar...

full text

APPLICATION OF FINITE ELEMENT MODEL UPDATING FOR DAMAGE ASSESSMENT OF SPACE STRUCTURE USING CHARGED SYSTEM SEARCH ALGORITHM

Damage assessment is one of the crucial topics in the operation of structures. Multiplicities of structural elements and joints are the main challenges about damage assessment of space structure. Vibration-based damage evaluation seems to be effective and useful for application in industrial conditions and the low-cost. A method is presented to detect and assess structural damages from changes ...

full text

A Comparative Study of Frequency-domain Finite Element Updating Approaches Using Different Optimization Procedures

In order to achieve a more accurate finite element (FE) model for an as-built structure, experimental data collected from the actual structure can be used to update selected parameters of the FE model. The process is known as FE model updating. This research compares the performance of two frequency-domain model updating approaches. The first approach minimizes the difference between experiment...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 48  issue 1

pages  75- 88

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023