Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Authors

  • Sayeh Mirzaei School of Engineering Science, College of Engineering, University of Tehran
Abstract:

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A practically optimal scanning strategy is presented. The suggested techniques are beneficial particularly for the case of large directive antennas. The UAV follows a predefined trajectory in the scanning windows around the AUT and reads the field strength. Then, using compressed sensing (CS) method, the antenna pattern is reconstructed. It is shown that applying Bayesian CS algorithm to the samples of field intensity gathered by UAV can efficiently reconstruct the pattern. Discrete cosine Transform (DCT) is utilized for sparsifying the antenna patterns. Performance is evaluated by obtaining the reconstructed patterns for different antenna types. The effects of the antenna type and area of scanning are analyzed. It is shown that satisfying performance can be achieved with measuring about 50 percent of the total pattern samples. The reconstruction error of different CS implementations is computed and superiority of Bayesian CS is illustrated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Unmanned Aerial Vehicle Images

The main aim of this chapter is to give to the reader a complete overview about the general context in which the thesis is positioned. In a second part, the problems faced in the following chapters are introduced. Finally, we describe the proposed solutions and the thesis structure and organization. Chapter

full text

Radiation surveillance using an unmanned aerial vehicle.

Radiation surveillance equipment was mounted in a small unmanned aerial vehicle. The equipment consists of a commercial CsI detector for count rate measurement and a specially designed sampling unit for airborne radioactive particles. Field and flight tests were performed for the CsI detector in the area where (137)Cs fallout from the Chernobyl accident is 23-45 kBq m(-2). A 3-GBq (137)Cs point...

full text

Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as ...

full text

Aerial Terrain Mapping Using Unmanned Aerial Vehicle Approach

This paper looks into the latest achievement in the low-cost Unmanned Aerial Vehicle (UAV) technology in their capacity to map the semi-development areas. The objectives of this study are to establish a new methodology or a new algorithm in image registration during interior orientation process and to determine the accuracy of the photogrammetric products by using UAV images. Recently, UAV tech...

full text

Multi-contrast reconstruction with Bayesian compressed sensing.

Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region of interest under several different contrast preparations. This work presents a reconstruction algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from undersampled k-space data with higher fidelity than when the images are reconstructed either individually or join...

full text

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 51  issue 1

pages  93- 100

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023