Ultra-Fine Grained Dual-Phase Steels
Authors
Abstract:
This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and carbides as the initial microstructure for rapid intercritical annealing. The intercritical annealing step was performed with heating and cooling rates of at least 100 °C/s and a holding time of 30 s. The intercritical temperature was selected to result in 20- 35% martensite in the final microstructures for C-Mn steels with carbon contents of 0.06, 0.12 and 0.17 wt%, respectively. The proposed processing routes produced an ultra-fine grained ferrite-martensite structure withgrain sizes of approximately 1 ?m for all three steels. The tensile strength of these ultra-fine grained dualphase steels can be increased by up to 200 MPa as compared to coarse-grained dual-phase steels while maintaining uniform elongation values. The rather narrow processing window necessary to obtain these properties was evaluated by determining the effect of intercritical annealing conditions on microstructure evolution. Further, the experimental results were confirmed with phase field simulations of austenite formation indicating that rapid heat treatment cycles are essential to obtain fine grained intercritical austenite that leads to martensite islands with sizes of 1 ?m and below in the final microstructure.
similar resources
ultra-fine grained dual-phase steels
this paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. a laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...
full textULTRA FINE FERRITE FORMATION IN Si-Mn TRIP STEELS
Abstract: In the present investigation, the effects of thermomechanical processing parameters and the steel chemical composition on the ultra fine ferrite formation characteristics were studied. This was programmed relying on the capabilities of strain induced transformation (SIT) phenomenon and applying to different grades of Si-Mn TRIP (Transformation Induced Plasticity) steels. According...
full textHigh Temperature Behavior of Dual Phase Steels
Dual phase steels with different martensite volume fraction and morphology were tensile tested at a temperature range of 25 to 5500C. Stress-strain curves of all steels showed serration flow at temperatures of 250 and 3500C, and smooth flow at the other temperatures. Both yield and ultimate tensile strengths increased with increasing testing temperature up to about 450<sup...
full textProperties of Fine–Grained Steels Generated by Displacive Transformation
It has been possible in recent times to make large quantities of steels in which the controlling scale is 20 nm or less, i.e., comparable to that of carbon nanotubes. The mechanical properties of such steels are abnormal. For example, in some cases the ductility vanishes as the strength increases, whereas in others the ductility almost entirely consists of uniform plastic strain. Some of the st...
full texthigh temperature behavior of dual phase steels
dual phase steels with different martensite volume fraction and morphology were tensile tested at a temperature range of 25 to 5500c. stress-strain curves of all steels showed serration flow at temperatures of 250 and 3500c, and smooth flow at the other temperatures. both yield and ultimate tensile strengths increased with increasing testing temperature up to about 4500c and then decreased at h...
full textOptimization of ECMAP parameters in production of ultra-fine grained Al1050 strips using Grey relational analysis
Production of lightweight metals with a higher strength to weight ratio is always the main goal of researchers. In this article, equal channel multi angular pressing (ECMAP) process as one of the most appealing severe plastic deformation (SPD) methods on production of ultra-fine grained (UFG) materials studied. Two main routes A and C investigated by FEM and compared with each other from differ...
full textMy Resources
Journal title
volume 45 issue 1
pages 1- 6
publication date 2012-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023