Type-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles

Authors

  • Amirjamshidy, A.
  • Sharifi, J.
Abstract:

The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzziness, it behaves like a robust control, hence it is suitable for control of nonlinear uncertain systems which uncertainty may be due to parameter variation or un-modeled dynamics. The controller output for stabilization of vehicle is corrective yaw moment. Controller output is the torque that distribute by braking and acceleration on both sides of the vehicle. We simulate our designs on MATLAB software. Some drive maneuvers will be carry to validate system performance in vehicle stability maintenance. Simulation results indicate that distributed torque-brake control strategy based on Type-2 fuzzy logic controller can improve the stability and maneuverability of vehicle, significantly in comparison with uncontrolled vehicle and Type-1 fuzzy ESC. Furthermore, we compare the conventional braking ESC with our designed ESC, i.e. distributed exertion of torque ESC and braking ESC in view point of both stabilization and performance. As we will see, proposed ESC can decrease vehicle speed reduction, in addition to better vehicle stability maintenance.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Yaw Rate Control and Actuator Fault Detection and Isolation for a Four Wheel Independent Drive Electric Vehicle

In this paper, a new actuator fault detection and isolation method for a four wheel independent drive electric vehicle is proposed. Also, a controller based on sliding mode control method is proposed for lateral stability of the vehicle. The proposed control method is designed in three high, medium and low levels. At the high-level, the vehicle desired dynamics such as longitudinal speed refere...

full text

A Study on the Control Performance of Electronic Differential System for Four-Wheel Drive Electric Vehicles

Abstract: The electronic differential system (EDS) is an important issue for four-wheel drive electric vehicles. This paper delineates an advanced EDS steering strategy and carries out a careful study of its control performance by numerical simulations that comply with the requirements of ISO4238:2012. The results demonstrate that the EDS feedback gain plays an important role to its control per...

full text

Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique

This paper proposes a robust gain-scheduled H1 controller for lateral stability control of four-wheelindependent-drive electric vehicles via linear parameter-varying technique. The controller aims at tracking the desired yaw rate and vehicle sideslip angle by controlling the external yaw moment. In the design of controller, uncertain factors such as vehicle mass and tire cornering stiffness in ...

full text

Four-Wheel Drive and Independent Steering for Small Electric Vehicles: Active Stability Control during High–Speed Cornering

Since car manufacturers pursue in the development of environmental -friendly vehicle, the demand for extensive research on stability, controllability, and reliability of electric vehicles (EVs) increases. Electric powered and by-wire control technology allow manufacturers to build independent four -wheel steering of an allwheel drive in-wheel EV. In past research, we investigated the advantages...

full text

Genetic Algorithms based Optimal Energy Management Strategy for Four-wheel Independent Drive Electric Vehicles

This paper focuses on the design of power management strategy for four-wheel independent drive electric vehicles (4WID EVs). Since the efficiency of the motor and inverter is different under different driving conditions, genetic algorithm based optimal energy management strategy is proposed to maximize the efficiency of motor drive systems. Not only the efficiency of motor, but also the efficie...

full text

An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control

This paper presents an acceleration slip regulation (ASR) system for four-wheel drive (4WD) electric vehicles, which are driven by the front and rear axles simultaneously. The ASR control strategy includes three control modes: average distribution of inter-axle torque, optimal distribution of inter-axle torque and independent control of optimal slip rate, respectively, which are designed based ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  2633- 2649

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023