Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

Authors

  • Ayan Chatterjee Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
  • Mritunjay Singh Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India
Abstract:

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e. its semi-infinite part. Without losing any generality, one can consider that the aquifer is initially contamination-free. Thus, the current study explores variations of two-dimensional contaminant concentration with depth throughout the domain, showing them graphically. Non-point source problem, i.e. the line source problem, can be discussed by solving two-dimensional depth-dependent variable source problem, as x=0 is a 2D line. A new transformation has been used to transform the time-dependent ADE to one with constant coefficients, with Matlab (pdetool) being employed in order to solve the problem, numerically, using finite element method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Solving Two-dimensional Variable-order Fractional Advection-dispersion Equation

Abstract: In this paper, a two-dimensional variable-order fractional advection-dispersion equation with variable coefficient is considered. The numerical method with first order temporal accuracy and first order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by using energy method. Finally, the results of a numerical example supports the theoret...

full text

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

full text

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third–order ...

full text

Application of a fractional advection-dispersion equation

A transport equation that uses fractional-order dispersion derivatives has fundamental solutions that are Lévy’s a-stable densities. These densities represent plumes that spread proportional to time, have heavy tails, and incorporate any degree of skewness. The equation is parsimonious since the dispersion parameter is not a function of time or distance. The scaling behavior of plumes that unde...

full text

Subordinated Advection-dispersion Equation for Contaminant Transport

A mathematical method called subordination broadens the applicability of the classical advection--dispersion equation for contaminant transport. In this method, the time variable is randomized to represent the operational time experienced by different particles. In a highly heterogeneous aquifer, the operational time captures the fractal properties of the medium. This leads to a simple, parsimo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  1- 8

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023