Treatment of Aqueous Solution Containing Acid red 14 using an Electro Peroxone Process and a Box-Behnken Experimental Design

Authors

  • Aref Shokri Department of Chemistry, Payame Noor University, Tehran, Iran
  • Safora Karimi Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran -Jundi-Shapur research institute, Dezful, Iran
Abstract:

Background & Aims of the Study: Azo dyes utilized in industrial processes, such as the textile manufacturing, lead to the creation of huge amounts of colored wastewaters that contain non-organic and organic constituents. Therefore, it is necessary to search for remedies in this regard. This study investigated the degradation and mineralization of Acid red 14 (AR14), which is a mono Azo dye generally employed in textile manufacturing, using an Electro peroxone process. The Electro-peroxone is a grouping of ozone and electrochemically generated hydrogen peroxide that can result in the production of strong hydroxyl radicals. Materials and Methods: This project was accompanied on synthetic wastewater that holds a high concentration of Acid red 14(400 mg/l) based on a Box-Behnken experimental design using an Electro-peroxone process for the remediation. Moreover, the influence of operational parameters was investigated in this study. Results: The results obtained from an Electro-peroxone process in a cylinder-shaped reactor showed 100% AR14 removal after 30 min with an initial dosage of dye  at 400 mg/l at an optimum condition (current intensity at 0.7 A, pH at 10, reaction time at 30 min, and electrolyte concentration at 0.1 M). Moreover, the removal percentage of the chemical oxygen demand was obtained at 69% after 30 min indicating the great performance of Electro-peroxone in the mineralization of AR14. Conclusion: The hydrogen peroxide is produced electrochemically from O2 in the O2-O3 mixture, which was entered into the reactor. Subsequently, the hydroxyl radicals were shaped via the peroxone reaction. Based on the high removal percentages of COD in short reaction time, it can be found that the Electro-peroxone process produces no secondary pollutants. Therefore, it can be regarded as an environmentally-friendly water treatment method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Removal of Lead from Aqueous Solutions using Fagus orientalis Lipsky: Box-Behnken Experimental Design

Fagus orientalis Lipsky tree leaves, which are abundant in Iran, were evaluated for removal of lead from aqueous solutions. The optimization strategy is carried out by using two level full factorial designs. Results of the two levels full factorial design (2) based on an analysis of variance demonstrated that the initial pH, contact time and concentration of biomass are statistically significan...

full text

Optimization of process parameters for COD removal by Coagulation Treatment using Box–Behnken design

Coagulation treatment of sago wastewater was studied and laboratory studies were carried out using alum as coagulant. Coagulation treatment conditions were optimised through response surface methodology (RSM). Operational parameters namely dosage of alum (Al [email protected]

full text

A Box-Behnken experimental design for microwave assisted extraction optimization of pectin from citron peel

Microwave assisted extraction technique was employed to extract pectin from citron peel. Box-Behnken design was applied to investigate the influence of irradiation time, microwave power and pH on the yield and DE of pectin. The finding indicated that the optimal conditions for the maximum yield of pectin (30.71%) were achieved at irradiation time of 3 min, microwave power of 700 W and pH of 1.5...

full text

Characterization and Photo-catalytic Efficiency of MnFe2O4/Zn2SiO4 for Aniline Degradation Using Box-Behnken Experimental Design and Simulated Solar Radiation

In this research, Zn2SiO4 as a support and MnFe2O4 as a main photo-catalyst were individually syn-thesized and MnFe2O4 was fixed on Zn2SiO4 with solid state dispersion method. MnFe2O4 nano pho-to-catalyst was synthesized by co-precipitation method and reflux condition for 12 hours at 85°C in the presence of urea. For identification of catalysts Fourier-transform infrared (FTIR) sp...

full text

The Kinetic and Thermodynamic Study for Decolorization of Congo red from Aqueous Solution Using Electrocoagulation Process

The removal of color from synthetic wastewater containing Congo red was experimentally investigated using electrocoagulation process. The effects of operational parameters such as current density, electrolysis time, electrolyte concentration, electrode distance, initial dye concentration, initial pH and temperature on color removal efficiency were investigated in this study. The tentative resul...

full text

Degradation of High-Concentration of Perchloroethylene from Aqueous Solution Using Electro-Fenton Process

Introduction: Perchloroethylene (PCE) is one of the most well-known chlorinated organic compounds recently detected in aqueous environments. The presence of PCE in aquatic ecosystems has caused many health problems and environmental challenges. Therefore, its removal and treatment from aqueous environments are essential. Materials and Methods: The electro-Fenton (EF) process was carried out in...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  48- 57

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023