Transient Thermal Stresses Analysis in a FPGM Cylinder

Authors

  • Nabard Habibi Mechanical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
  • Omid Ahmadi Mechanical Engineering Department, Urmia University, Urmia, Iran
  • Sadi Samawati Mechanical Engineering Department, Khajeh Nasir Toosi University of Technology, Tehran, Iran
Abstract:

The present study aims to investigate the analysis of stress, strain, displacement, and electrical potential of a thick hollow cylinder made of FGPM under mechanical and thermal loads. Distribution of mechanical property of material is considered along the shell stick through the power distribution function. Thermal loads have been taken to signify the difference of temperature between outer and inner surfaces for each type of mechanical property. After extracting and solving the differential equations in transient state and the observation of mechanical and thermal boundary conditions, governing functions are obtained through the following parameters: thermal conduction non-homogeneous parameters, thermal linear distribution coefficient, elastic stiffness constant, piezo-electric coefficient, and dielectric constants.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

One-Dimensional Transient Thermal and Mechanical Stresses in FGM Hollow Cylinder with Piezoelectric Layers

In this paper, an analytical method is developed to obtain the solution for the one dimensional transient thermal and mechanical stresses in a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers. The FGM properties are assumed to depend on the variable r and they are expressed as power functions of r but the Poisson’s ratio is assumed to be constant. Transient te...

full text

Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model

The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the vo...

full text

Mechanical and Thermal Stresses In a Linear Plastic FGM Hollow Cylinder Due to Axisymmetric Loads

In this paper, an analytical solution for computing the linear plastic stresses and critical temperature and pressure in a FGM hollow cylinder under the internal pressure and temperature is developed. It has been assumed that the modulus of elasticity and thermal coefficient of expansion were varying through thickness of the FGM material according to a power law relationship. The Poisson's rati...

full text

Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Non-Axisymmetric Loads

In this paper, the general solution of steady-state two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous material (FGPM) is presented. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to sol...

full text

mechanical and thermal stresses in a linear plastic fgm hollow cylinder due to axisymmetric loads

in this paper, an analytical solution for computing the linear plastic stresses and critical temperature and pressure in a fgm hollow cylinder under the internal pressure and temperature is developed. it has been assumed that the modulus of elasticity and thermal coefficient of expansion were varying through thickness of the fgm material according to a power law relationship. the poisson's...

full text

Analysis of Thermal-Bending Stresses in a Simply Supported Annular Sector Plate

The present article deals with the analysis of thermal-bending stresses in a heated thin annular sector plate with simply supported boundary condition under transient temperature distribution using Berger’s approximate methods. The sectional heat supply is on the top face of the plate whereas the bottom face is kept at zero temperature. In this study, the solution of heat conduction is obtained...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  81- 94

publication date 2019-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023