Transient liquid phase bonding of AISI 304L stainless steels with the austenitic and martensitic microstructures

Authors

  • Karimzadeh, F.
  • Ashrafi, A.
  • Ghaderi, S.
Abstract:

In the present study, the effect of time and base metal microstructure on the Transient Liquid Phase (TLP) bonding of 304L stainless steel was studied. TLP was performed at 1050 0C for 5 and 60 minutes on the coarse grain austenitic and martensitic microstructure using BNi-2 interlayer. To prepare martensitic microstructure, as-received 304L was rolled at -15 0C up to 80% rolling reduction. TEM analysis was proved that the microstructure of 80% rolled samples consisted of two different morphologies of martensite namely as lath-type and dislocation cell type martensite.  It was observed that the structure of bonded zone after 5 min has consisted of isothermally solidified zone (ISZ) containing γ solid solution and athermally solidified zone (ASZ) containing complex boride phases. Meanwhile, after 60 min of  heating, the structure of bonded zone completely solidifies isothermally. The obtained results also showed that the martensitic microstructure considerably effect on the width of diffusion affected zone (DAZ) which was related to the reversion of martensite to ultrafine grain austenite during heating.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Microstructure and Mechanical Properties of Cold Rolled AISI 304L and 316L Austenitic Stainless Steels during Reversion Annealing

Microstructural evolutions during annealing of cold rolled AISI 304L and AISI 316L stainless steels were studied. Cold rolled AISI 304L alloy was fully martensitic but cold rolled AISI 316L alloy was partially martensitic due to the higher stability of the austenite phase in the latter. During continuous heating to elevated temperatures, the complete reversion of strain-induced martensite at 75...

full text

Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cycli...

full text

A Corrosion Study of Grain-Refined 304L Stainless Steels Produced by the Martensitic Process

AISI 304L austenitic stainless steel with different grain sizes of 0.5 -12 μm was obtained through the martensitic process. Corrosion behavior of different samples was investigated in a 0.5M HCl solution using open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy tests. Also, the correlation between the grain size and pitting corrosion resistance was as...

full text

Low-Temperature Carburization of Austenitic Stainless Steels

LOW-TEMPERATURE CARBURIZATION is a gaseous carburization process performed at atmospheric pressure, at temperatures where the kinetics of substitutional diffusion are very slow. Low-temperature carburization hardens the surface of austenitic stainless steels through the diffusion of interstitial carbon, without the formation of carbides. The surface must be activated, by modification and remova...

full text

Austenite Stability during Nanoindentation of Ultrafine and Coarse Grained AISI 304L Stainless Steels

In the present study, the effect of grain size on the austenite stability was studied by nanoindentation tests in a 304L stainless steel. Thermomechanical processing based on cold rolling and annealing was used to produce two different types of austenite: ultrafine grained (UFG) austenite with the average grain size of 0.65 μm and coarse grained (CG) austenite with the average grain size of 12 ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  1- 11

publication date 2020-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023