Total graph of a $0$-distributive lattice
Authors
Abstract:
Let £ be a $0$-distributive lattice with the least element $0$, the greatest element $1$, and ${rm Z}(£)$ its set of zero-divisors. In this paper, we introduce the total graph of £, denoted by ${rm T}(G (£))$. It is the graph with all elements of £ as vertices, and for distinct $x, y in £$, the vertices $x$ and $y$ are adjacent if and only if $x vee y in {rm Z}(£)$. The basic properties of the graph ${rm T}(G (£))$ and its subgraphs are studied. We investigate the properties of the total graph of $0$-distributive lattices as diameter, girth, clique number, radius, and the independence number.
similar resources
A Study of the Total Graph
Let R be a commutative ring with $Z(R)$ its set of zero-divisors. In this paper, we study the total graph of $R$, denoted by $T(Gamma(R))$. It is the (undirected) graph with all elements of R as vertices, and for distinct $x, yin R$, the vertices $x$ and $y$ are adjacent if and only if $x + yinZ(R)$. We study the chromatic number and edge connectivity of this graph.
full textZagreb Indices and Coindices of Total Graph, Semi-Total Point Graph and Semi-Total Line Graph of Subdivision Graphs
Expressions for the Zagreb indices and coindices of the total graph, semi-total point graph and of semi-total line graph of subdivision graphs in terms of the parameters of the parent graph are obtained, thus generalizing earlier existing results.
full textDistributive Lattice-Structured Ontologies
In this paper we describe a language and method for deriving ontologies and ordering databases. The ontological structures arrived at are distributive lattices with attribution operations that preserve ∨, ∧ and ⊥. The preservation of ∧ allows the attributes to model the natural join operation in databases. We start by introducing ontological frameworks and knowledge bases and define the notion ...
full textReimer's Inequality on a Finite Distributive Lattice
We generalize Reimer’s Inequality [6] (a.k.a the BKR Inequality or the van den Berg–Kesten Conjecture [1]) to the setting of finite distributive lattices. (MSC 60C05)
full texta note on the zero divisor graph of a lattice
abstract. let $l$ be a lattice with the least element $0$. an element $xin l$ is a zero divisor if $xwedge y=0$ for some $yin l^*=lsetminus left{0right}$. the set of all zero divisors is denoted by $z(l)$. we associate a simple graph $gamma(l)$ to $l$ with vertex set $z(l)^*=z(l)setminus left{0right}$, the set of non-zero zero divisors of $l$ and distinct $x,yin z(l)^*$ are adjacent if and only...
full textCharacterizations of 0-distributive Posets
The concept of a 0-distributive poset is introduced. It is shown that a section semicomplemented poset is distributive if and only if it is 0-distributive. It is also proved that every pseudocomplemented poset is 0-distributive. Further, 0-distributive posets are characterized in terms of their ideal lattices.
full textMy Resources
Journal title
volume 9 issue 1
pages 15- 27
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023