TiO2 Nanoparticles as Potential Promoting Agents of Fibrillation of α-Synuclein, a Parkinson’s Disease-Related Protein
Authors
Abstract:
Background: In recent years, nanomaterials have been widely used in large quantities which make people bemore frequently exposed to the chemically synthesized nanoparticles (NPs). When NPs are introduced intoan organism, they may interact with a variety of cellular components with yet largely unknown pathologicalconsequences.Objective: It was found that NPs enhance the rate of protein fi brillation in the brain by decreasing the lag time for nucleation. Protein fi brillation is implicated in the pathogenesis of the several neurodegenerative diseases such as Parkinson’s disease (PD). α-Synuclein (αS) is natively an unfolded protein which is involved in the pathogenesis of PD. In the present study, we have analyzed the eff ects of three diff erent NPs on αS fi brillation.Materials and Methods: αS protein expression and purifi cation was done and fi brils formation was inducedin the absence or presence of the three types of NPs (i. e., TiO2, SiO2, and SnO2). The enhancement of thefl uorescence emission of Thiofl avin T (ThT) and transmission electron microscopy (TEM) were used to monitor the appearance and growth of the fi brils. The adsorption of αS monomers on the surface of NPs was investigated by tyrosine fl uorescence emission measurements.Results: We found that TiO2-NPs enhances αS fi bril formation even at a concentration of 5 μg.mL-1, whilethe two other NPs show no signifi cant eff ect on the kinetics of the fi brillation. Intrinsic tyrosine emissionmeasurement has confi rmed that the TiO2-NPs interact with αS fi brillation products. It is suggested that TiO2-NPs may enhance the nucleation of αS protein that leads to protein fi bril formation.Conclusion: The fi brillization process of αS protein is profoundly aff ected by the presence of TiO2-NPs. Thisfi nding unveils the neurotoxicity potential of the TiO2-NPs, which may be considered as a probable risk for PD.
similar resources
Parkinson's Disease-Related Protein, α-Synuclein, in Malignant Melanoma
BACKGROUND Melanoma is the major cause of skin cancer death worldwide. Parkinson's disease is a neurodegenerative disorder that is caused by mutation of alpha-synuclein or other genes. Importantly, epidemiological studies have reported co-occurrence of melanoma and Parkinson's disease, suggesting that these two diseases could share common genetic components. METHODOLOGY/PRINCIPAL FINDINGS Rec...
full textα-Synuclein Transgenic Drosophila As a Model of Parkinson's Disease and Related Synucleinopathies
α-Synuclein (α-Syn) is a major component of protein inclusions known as Lewy bodies, which are hallmarks of synucleinopathies such as Parkinson's disease (PD). The α-Syn gene is one of the familial PD-causing genes and is also associated with an increased risk of sporadic PD. Numerous studies using α-Syn expressing transgenic animals have indicated that α-Syn plays a critical role in the common...
full textα-Synuclein as a ferrireductase.
Many proteins associated with neurodegenerative diseases have poorly defined or unknown functions. α-Synuclein is one such protein which is associated with a range of diseases including Parkinson's disease. Now accepted as a metal-binding protein, α-synuclein's function could possibly be defined in relation to the binding of cofactors. It has been suggested recently that α-synuclein is able to ...
full textcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولPotential Modes of Intercellular α-Synuclein Transmission
Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson's disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms wh...
full textMy Resources
Journal title
volume 15 issue 2
pages 87- 94
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023