Tinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity
Authors
Abstract:
Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain networks. According to neuroimaging studies, the human brain is assumed as an organization with the different degree of small-worldness, which is a concept in graph theory. Such organization is able to optimize the functional integration and segregation and therefore efficiently transfer the information among its different pairs of nodes. Materials and Methods: In this paper, we introduce an approach to automatically distinguish tinnitus individuals from healthy controls based on whole-brain functional connectivity and network analysis. Eight participants with tinnitus and eight healthy individuals were included in the study. Resting state electroencephalographic (EEG) data were recorded using a 64-channel recorder. The functional connectivity analysis was applied to the EEG data using Weighted Phase Lag Index (WPLI) for various frequency bands in 2-44 Hz frequency range. The classification was performed on graph theoretical measures using support vector machine (SVM) as a robust classification method. Results: Experimental results showed that the variations of connectivity patterns in tinnitus group were observed within the frontal, temporal and parietal regions. Further, promising classification performance was achieved with a high accuracy, sensitivity, and specificity in all frequency bands. The best classification performance was observed in the beta2 frequency band with accuracy, sensitivity, and specificity of 100%. The results demonstrate that four graph theory based network measures i.e. node strength, clustering coefficient, local efficiency and characteristic path length could successfully discriminate tinnitus from healthy group. Conclusion: The results would be interpreted that the tinnitus network is more segregated but has weaker global efficiency compared to healthy group in high frequencies. In addition, tinnitus individuls presented lower segregation and greater integration relative to the healthy group in the theta frequency domain. As a conclusion, the tinnitus group shows a reduction of small-worldness as well as network integration in high-frequency bands. In general, our study provides substantial evidence that the tinnitus network can be successfully detected by consistent measures of the brain networks based on EEG functional connectivity.
similar resources
Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
full textCorrelation Analysis of the Tinnitus Handicap Inventory and Distress Network in Chronic Tinnitus: An EEG Study
Aim: Tinnitus is a common disorder with a considerable amount of distress that affects the patient`s daily life. No objective tools were approved for measuring tinnitus distress. It can be estimated only by subjective scales and questionnaires, albeit, the Electroencephalography (EEG) studies have reported some alterations regarding tinnitus distress network. This study aimed to investigate the...
full textIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
full textAssessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...
full textGraph analysis of spontaneous brain network using EEG source connectivity
Exploring the human brain networks during rest is a topic of great interest. Several structural and functional studies have previously been conducted to study the intrinsic brain networks. In this paper, we focus on investigating the human brain network topology using dense Electroencephalography (EEG) source connectivity approach. We applied graph theoretical methods on functional networks rec...
full textBrain Functional Correlates of Intelligence Score in ADHD Based on EEG
Introduction: It has been shown that intelligence as a general mental ability is related to the structure and function of the brain regions. However, the specificity of these regional dependencies to the intelligence scores in the typical and atypical developed individuals needs to be well understood. In this study, we hypothesized that neural correlates of IQ should not have a fixed pattern ra...
full textMy Resources
Journal title
volume 15 issue Special Issue-12th. Iranian Congress of Medical Physics
pages 50- 50
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023