Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Authors
Abstract:
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine (SVM) and Random Forest (RF) are proposed and analyzed for modelling and forecasting the Bitcoin price. While some of the proposed models are univariate, the other models are multivariate and as a result, the maximum, minimum and the opening daily price of Bitcoin are also used in these models. The proposed models are applied on the Bitcoin price from December 18, 2019 to March 1, 2020 and their performances are compared in terms of the performance measures of RMSE and MAPE by Diebold-Mariano statistical test. Based on RMSE and MAPE measures, the results show that SVM provides the best performance among all the models. In addition, ARIMA and Bayesian approaches outperform other univariate models where they provide smaller values for RMSE and MAPE.
similar resources
Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
full textMachine Learning Strategies for Time Series Forecasting
The increasing availability of large amounts of historical data and the need of performing accurate forecasting of future behavior in several scientific and applied domains demands the definition of robust and efficient techniques able to infer from observations the stochastic dependency between past and future. The forecasting domain has been influenced, from the 1960s on, by linear statistica...
full textForecasting Economics and Financial Time Series: ARIMA vs. LSTM
Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In par...
full textElectricity price forecasting – ARIMA model approach
Electricity price forecasting is becoming more important in everyday business of power utilities. Good forecasting models can increase effectiveness of producers and buyers playing roles in electricity market. Price is also a very important element in investment planning process. This paper presents a forecasting technique to model day-ahead spot price using well known ARIMA model to analyze an...
full textGold Price Forecasting Using ARIMA Model
This study gives an inside view of the application of ARIMA time series model to forecast the future Gold price in Indian browser based on past data from November 2003 to January 2014 to mitigate the risk in purchases of gold. Hence, to give guideline for the investor when to buy or sell the yellow metal. This financial instrument has gained a lot of momentum in recent past as Indian economy is...
full textMy Resources
Save resource for easier access later
Save to my libraryJournal title
volume 33 issue 7
pages -
publication date 2020-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023