Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

Authors

  • Ali Khojasteh School of Engineering Science, College of Engineering, University of Tehran
  • Farzad Akbari School of Civil Engineering, College of Engineering, University of Tehran
Abstract:

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-potential and displacement-potential relations, with the utilization of Fourier series and Hankel transform. As illustrations, the present Green’s functions were analytically degenerated into special cases, such as exponentially graded half-space and homogeneous full-space bi-material Green’s functions. Owing to the complicated integrand functions, the integrals were evaluated numerically, and in computing the integrals numerically, a robust and effective methodology was laid out which provided the necessary account of the presence of singularities of integration. Some typical numerical examples were also illustrated to demonstrate the general features of the exponentially graded bi-material Green’s functions which will be recognized by the effect of degree of variation of material properties.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

three-dimensional interfacial green’s function for exponentially graded transversely isotropic bi-materials

by virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. three-dimensional point-load green’s functions for stresses and displacements were given in line-integral representations. the formulation included a complete set of transformed stress-p...

full text

Three-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic Diffusive Cylindrical Panel

The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized theories of thermoelastic diffusion. After applying the displacement potential functions in the basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely transverse mo...

full text

On Green’s function for a three-dimensional exponentially graded elastic solid

The problem of a point force acting in an unbounded, three-dimensional, isotropic elastic solid is considered. Kelvin solved this problem for homogeneous materials. Here, the material is inhomogeneous; it is ‘functionally graded’. Specifically, the solid is ‘exponentially graded’, which means that the Lamé moduli vary exponentially in a given fixed direction. The solution for the Green’s functi...

full text

Elasto-Thermodiffusive Response in a Two-Dimensional Transversely Isotropic Medium

The present article investigates the elasto-thermodiffusive interactions in a transversely isotropic elastic medium in the context of thermoelasticity with one relaxation time parameter and two relation time parameters. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space in which the surface is free of tractions and is subjected to time-dependent th...

full text

Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure

The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...

full text

Acoustic nonlinearity parameters for transversely isotropic polycrystalline materials.

This article considers polycrystalline materials with macroscopic elastic anisotropy and the effect of the anisotropy on the quadratic nonlinearity parameter used to describe second harmonic generation in solids. The polycrystal is assumed to have transversely isotropic elastic symmetry, which leads to a directional dependence of the nonlinearity parameters. Additionally, the anisotropy leads t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 1

pages  71- 96

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023