Thermal-insulation performance of low density polyethylene (LDPE) foams: Comparison between two radiation thermal conductivity models

Authors

  • Ali Doniavi Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
  • Rezgar Hasanzadeh Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
  • Taher Azdast Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
Abstract:

The loss of energy especially in industrial and residential buildings is one of the main reasons of increased energy consumption. Improving the thermal insulation properties of materials is a fundamental method for reducing the energy losses. Polymeric foams are introduced as materials with excellent thermal insulation properties for this purpose. In the present study, a deep theoretical investigation is performed on the overall thermal conductivity of low-density polyethylene (LDPE) foams. The thermal conductivity by radiation is predicted using two different methods. The most appropriate model is selected in comparison with experimental results. The results show that the theoretical model has an appropriate agreement with the experimental results. The effects of foam characteristics including foam density, cell size, and cell wall thickness on the overall thermal conductivity are investigated. The results indicate that by decreasing the cell size and increasing the cell wall thickness, the overall thermal conductivity is decreased significantly. Also, there is an optimum foam density in order to achieve the smallest thermal conductivity. The lowest overall thermal conductivity achieved in the studied ranges is 30 mW/mK at foam density of 37.5 kg.m-3, cell size of 100 μm, and cell wall thickness of 6 μm.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Thermal Conductivity and Thermal Contact Resistance of Metal Foams

Unique specifications of metal foams such as relatively low cost, ultra-low density, high surface-area-to-volume ratio, and most importantly, the ability to mix the passing fluid provide them a great potential for a variety of thermal-fluidics

full text

Determination of the Thermal Resistance of Pipe Insulation Material from Thermal Conductivity of Flat Insulation Products

New European product standards now include a mandatory requirement for manufacturers to declare the temperature-dependent thermal conductivity for each insulation used in building equipments and industrial installations. For pipe insulation systems, the measurement is usually performed by a standard pipe test method, in which the value on a large temperature range is integrated to reduce temper...

full text

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

full text

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

full text

Thermal conductivity and contact resistance of metal foams

Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modelling of thermal-hydraulic systems incorporating metal foams. The analysis of heat transfer requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foam and the adjacent surfaces/lay...

full text

On the Prediction of the Radiation Term in the Thermal Conductivity of Plastic Foams

− The radiative contribution to thermal conductivity in plastic foams is studied through two different approaches. Both consist in close forms derived from the heat transfer equation governing the intensity of radiation in foams, where scattering can be treated as isotropic. While one approach is based on the solution of the equation for a continuous medium, the other one is based in the soluti...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  13- 21

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023