Thermal Effect on the Torsional Buckling of Double Walled Carbon Nanotube Embedded in Pasternak Foundation

Authors

  • Mehdi Mohammadimehr Assistant Professor, Faculty of Engineering, Kashan University, Kashan
  • Mohammad Sharif Zarei Ph.D. Student, Faculty of Engineering, Kashan University, Kashan
Abstract:

In this study the effect of thermal stress on the torsional buckling of double walled carbon nanotubes is investigated. Moreover based on nonlocal continuum mechanic the buckling governing equations are obtained and equilibrium of Equations is generalized to double wall nanotubes. Also in this study the elastic medium, small scale effect and van der Walls force are considered. Also for simulation of the interaction between the polymer matrix and external tube Pasternak model is used. The numerical results indicate that critical buckling load occurs in the middle modes. Moreover for the Winkler related the Pasternak model the buckling occurs earlier. Results show that for rigid elastic medium in both case of Pasternak and Winkler models the buckling load is independent of their values Moreover from the result it can be seen that the buckling load has been increase as the thermal effect change.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Buckling Analysis of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium Using the Energy Method

The axially compressed buckling of a double-walled carbon nanotabe surrounded by an elastic medium using the energy and the Rayleigh-Ritz methods is investigated in this paper. In this research, based on the elastic shell models at nano scale, the effects of the van der Waals forces between the inner and the outer tubes, the small scale and the surrounding elastic medium on the critical bucklin...

full text

Small Scale Effect on the Buckling Analysis of a Double-Walled Carbon Nanotube under External Radial Pressure Using Energy Method

In this paper, using energy method, small scale effects on the buckling analysis of a double-walled carbon nanotube (DWCNT) under external radial pressure is studied. The constitutive equations derived for a DWCNT using the nonlocal theory of elasticity which Eringen are presented for the first time. By minimizing the second variation of the total energy for a DWCNT, hence, the value of the non...

full text

Buckling of Double-walled Carbon Nanotubes

This paper is concerned with the buckling of double-walled carbon nanotubes (DWCNTs) under axial load. The DWCNTs are modelled as two cylindrical shells, one shell nested in the other and Winkler springs are introduced to connect them in order to simulate the van der Waals forces between the two nanotubes. By using the Donnell thin shell theory, we derive the governing equations for the bucklin...

full text

Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials

Related Articles Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions J. Appl. Phys. 111, 053502 (2012) Measurement of the two-dimensional magnetostriction and the vector magnetic property for a non-oriented electrical steel sheet under stress J. Appl. Phys. 111, 07E320 (2012) Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) Sr...

full text

Surface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid

Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT) fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB) model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle a...

full text

Study the Surface Effect on the Buckling of Nanowires Embedded in Winkler–Pasternak Elastic Medium Based on a Nonlocal Theory

Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physica...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  11- 16

publication date 2011-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023