Thermal Analysis of Friction Stir Welding with a Complex Curved Welding Seam (TECHNICAL NOTE)

Authors

  • Bahman Meyghani 1MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, 17923, Jingshi Road, Jinan, 250061, People's Republic of China
  • ChuanSong Wu MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, 17923, Jingshi Road, Jinan, 250061, People's Republic of China
  • Mokhtar Awang Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia
Abstract:

Friction stir welding (FSW) can be defined as a green technology, because the consumption of energy during this process is less than other welding methods. In addition, during the process there is no gas, filler material or other consumables. It should be noted that, complex curved shapes are now commonly used in different industries in a bid to have lightweight structures. According to the above-mentioned descriptions, several investigations into the potential benefits of adopting Friction Stir Welding (FSW) in the production and joining different materials are being undertaken. The work presented in this paper is focused on thermal behavior of the curved FSW and its benefits for the green technology. Due to the robust nature of FSW process aluminum 6061-T6 alloy has been selected as the welding material. The results of the study showed that, the total peak temperature value of 300°C happened at time, t = 3 s at the plunge stage (outside of the welding seam). Meanwhile, at the dwell stage (between t = 3 s to t = 5 s), there is a stable situation in the amount of the generated heat from the plastic deformation as well as the contact shear stress at the tool-workpiece contact interfaces, thus the interfacial temperature is found to be stable. By the end of the dwelling step, the total generated heat is stable to the maximum value of 300°C. At the step time of t = 12.8 s, the temperature is distributed asymmetrically across the workpiece until the time step of 19.6 s which at this point the asymmetric contour expanded in the stir zone.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Misalignment detection for friction stir welding or Enabling seam tracking for friction stir welding

This paper describes a technique for determining the position of the friction stir welding (FSW) tool with respect to the weld seam during welding. This technique is proposed for online misalignment detection or as a position estimator for in-process tracking of the weld seam for FSW.

full text

Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFS...

full text

A novel friction stir welding robotic platform: welding polymeric materials

The relevance, importance and presence of industrial robots in manufacturing have increased over the years, with applications in diverse new and nontraditional manufacturing processes. This paper presents the complete concept and design of a novel friction stir welding (FSW) robotic platform for welding polymeric materials. It was conceived to have a number of advantages over common FSW machine...

full text

Friction stir welding and processing

Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a de...

full text

Review: friction stir welding tools

Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. Commercial feasibility of the FSW process for harder alloys such as steels and titanium alloys awaits the development of cost effective and durable tools which lead to structurally sound welds consistently. Material...

full text

A Review of Numerical Analysis of Friction Stir Welding

Friction stir welding is a relatively new solid-state joining technique which is widely adopted in different industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a highly complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints and their three dimensional nature ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 10

pages  1480- 1484

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023