Theory of Gas Ionization by Intense Electromagnetic Fields

author

  • Shokri, B. Physics Department and Laser-Plasma Institute of Shahid Beheshti University
Abstract:

The distribution function of the electrons produced in the interaction between an intense electromagnetic wave and a neutral gas is derived and is shown to be nonequilibrium and anisotropic. By assuming that the time scale of gas ionization is much greater than the field period, it is shown that the electron distribution function formed in microwave and optical discharges has sharp anisotropy affecting the discharge plasma. The anisotropy stimulated by the inequality of average longitudinal and transverse energy of electrons is investigated. Furthermore, the parametric instability stimulated by scattering of incident wave on the density oscillation of plasma under the positive slope of EDF with respect to velocity is studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Atoms Interacting with Electromagnetic Fields, Multiphoton Ionization

The non linear interaction between an intense laser radiation and atoms leads to ionization through the absorption of N photons from the laser radiation via laser-induced virtual states. The multiphoton ionization rate varies as a function of the laser intensity I as IN. We discuss the two most important effects which govern multiphoton ionization processes : resonance effects and laser-coheren...

full text

Multiple Ionization of Atoms in Intense Laser Fields

A new ultrahigh vacuum-compatible ( 10 11 mbar) "reaction microscope" was built to investigate multiple ionization of atoms and molecules in ultra-short (23 fs), intense laser pulses (1014 1016 W/cm2, 795 nm) . In first experiments ion momentum distributions for single and double ionization of noble gas atoms in the nonsequential and sequential intensity regime were measured using linearly pola...

full text

Reconstruction of Atomic Ionization Probabilities in Intense Laser Fields

Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previou...

full text

Saturated ionization of fullerenes in intense laser fields.

We investigate the ionization of icosahedral fullerenes (C20, C60, C80, and C180) in an intense laser pulse using the S-matrix theory. The results obtained are in excellent agreement with the recent observations of unexpectedly high saturation intensities of the Buckminster fullerene and its multiply charged ions. Our analysis strongly suggests that the related phenomenon of suppressed ionizati...

full text

Dynamic tunnelling ionization of H2 in intense fields

Intense-field ionization of the hydrogen molecular ion by linearly-polarized light is modelled by direct solution of the fixed-nuclei time-dependent Schrödinger equation and compared with recent experiments. Parallel transitions are calculated using algorithms which exploit massively parallel computers. We identify and calculate dynamic tunnelling ionization resonances that depend on laser wave...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue None

pages  33- 38

publication date 2007-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023