The Urysohn, completely Hausdorff and completely regular axioms in $L$-fuzzy topological spaces
Authors
Abstract:
In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.
similar resources
THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived
full textthe urysohn axiom and the completely hausdorff axiom in l-topological spaces
in this paper, the urysohn and completely hausdorff axioms in general topology are generalized to l-topological spaces so as to be compatible with pointwise metrics. some properties and characterizations are also derived
full textThe Urysohn Axiom and the Completely Hausdorff Axiom in L-topological Spaces
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived.
full textCompletely regular fuzzifying topological spaces
The concept of a fuzzifying topology was given in [1] under the name L-fuzzy topology. Ying studied in [9, 10, 11] the fuzzifying topologies in the case of L = [0,1]. A classical topology is a special case of a fuzzifying topology. In a fuzzifying topology τ on a set X , every subset A of X has a degree τ(A) of belonging to τ, 0 ≤ τ(A) ≤ 1. In [4], we defined the degrees of compactness, of loca...
full textH([lambda])-completely Hausdorff axiom on L-topological spaces
This paper de1nes the new concept of completely Hausdor& axiom of an L-topological space by means of L-continuous mappings from an L-topological space to the re1ned Hutton’s unit L-interval by Wang. Some characterizations of the completely Hausdor& axiom, de1ned in this paper, are given, and many nice properties of this kind of completely Hausdor& axiom are proved. For example, it is hereditary...
full textOn completely homogeneous L-topological spaces
In this paper we investigate completely homogeneous Ltopological spaces. The smallest completely homogeneous Ltopology on a set X containing an Lset f is called the principal completely homogeneous Ltopology generated by f . Here we also study the principal completely homogeneous Ltopological spaces generated by an Lset and characterize completely homogeneous Alexandroff discrete Ltopological s...
full textMy Resources
Journal title
volume 12 issue 6
pages 109- 128
publication date 2015-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023