The Ramsey numbers of large trees versus wheels

Authors

  • D. Li School of Management and Engineering‎, ‎Nanjing University‎, ‎Nanjing 210093‎, ‎P.R. China.
  • D. Zhu School of Economics and Management‎, ‎Southeast University‎, ‎Nanjing 210093‎, ‎P.R. China.
  • L. Zhang School of Management and Engineering‎, ‎Nanjing University‎, ‎Nanjing 210093‎, ‎P.R. China.
Abstract:

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the ramsey numbers of large trees versus wheels

for two given graphs g1 and g2, the ramseynumber r(g1,g2) is the smallest integer n such that for anygraph g of order n, either $g$ contains g1 or the complementof g contains g2. let tn denote a tree of order n andwm a wheel of order m+1. to the best of our knowledge, only r(tn,wm) with small wheels are known.in this paper, we show that r(tn,wm)=3n-2 for odd m with n>756m^{10}.

full text

The Ramsey numbers of stars versus wheels

For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest positive integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Sn denote a star of order n and Wm a wheel of order m+1. This paper shows that R(Sn, W6) = 2n+1 for n ≥ 3 and R(Sn, Wm ) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2. © 2003 Elsevier Ltd. All rights reserved.

full text

The Ramsey numbers of paths versus wheels

For two given graphsG1 andG2, the Ramsey numberR(G1,G2) is the smallest integer n such that for any graph G of order n, either G containsG1 or the complement of G containsG2. Let Pn denote a path of order n and Wm a wheel of order m+ 1. In this paper, we show that R(Pn,Wm)= 2n− 1 for m even and n m− 1 3 and R(Pn,Wm)= 3n− 2 for m odd and n m− 1 2. © 2004 Elsevier B.V. All rights reserved.

full text

On Ramsey numbers for paths versus wheels

For two given graphs F and H, the Ramsey number R(F,H) is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn,Wm), where Pn is a path on n vertices and Wm is the graph obtained from a cycle on m vertices by adding a new ver...

full text

The Ramsey Numbers of Paths Versus Wheels: a Complete Solution

Let G1 and G2 be two given graphs. The Ramsey number R(G1, G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or G contains a G2. We denote by Pn the path on n vertices and Wm the wheel on m + 1 vertices. Chen et al. and Zhang determined the values of R(Pn,Wm) when m 6 n + 1 and when n + 2 6 m 6 2n, respectively. In this paper we determine all the value...

full text

Ramsey numbers of stars versus wheels of similar sizes

We study the Ramsey number R(Wm, Sn) for a star Sn on n vertices and a wheel Wm on m + 1 vertices. We show that the Ramsey number R(Wm, Sn)= 3n− 2 for n=m,m+ 1, and m+ 2, where m 7 and odd. In addition, we give the following lower bound for R(Wm, Sn) where m is even: R(Wm, Sn) 2n+ 1 for all n m 6. © 2004 Elsevier B.V. All rights reserved.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 4

pages  879- 880

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023