The principal ideal subgraph of the annihilating-ideal graph of commutative rings

Authors

  • Reza Taheri Islamic Azad University, Science and Research Branch, Tehran, Iran
Abstract:

Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set   of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where   $mathbb{P}(R)$ is the set of  proper principal ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. Then, we study some basic properties of $mathbb{AG}_P(R)$. For instance, we characterize rings for which $mathbb{AG}_P(R)$ is finite graph, complete graph, bipartite graph or star graph. Also, we study diameter and girth of $mathbb{AG}_P(R)$. Finally, we compare  the principal ideal subgraph $mathbb{AG}_P(R)$ and spectrum subgraph $mathbb{AG}_s(R)$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the principal ideal subgraph of the annihilating-ideal graph of commutative rings

let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set   of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where   $mathbb{p}(r)$ is...

full text

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

full text

Finitely Generated Annihilating-Ideal Graph of Commutative Rings

Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...

full text

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

full text

The Intersection Graph of Finite Commutative Principal Ideal Rings

In this article we consider the intersection graph G(R) of nontrivial proper ideals of a finite commutative principal ideal ring R with unity 1. Two distinct ideals are adjacent if they have non-trivial intersection. We characterize when the intersection graph is complete, bipartite, planar, Eulerian or Hamiltonian. We also find a formula to calculate the number of ideals in each ring and the d...

full text

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  39- 52

publication date 2016-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023