The maximal total irregularity of some connected graphs
author
Abstract:
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
similar resources
the maximal total irregularity of some connected graphs
the total irregularity of a graph g is defined as 〖irr〗_t (g)=1/2 ∑_(u,v∈v(g))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈v(g). in this paper by using the gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
full textTotal vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
full textThe irregularity and total irregularity of Eulerian graphs
For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.
full texttotal vertex irregularity strength of corona product of some graphs
a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...
full textGroup irregularity strength of connected graphs
We investigate the group irregularity strength (sg(G)) of graphs, that is, we find the minimum value of s such that for any Abelian group G of order s, there exists a function f : E(G) → G such that the sums of edge labels at every vertex are distinct. We prove that for any connected graph G of order at least 3, sg(G) = n if n = 4k + 2 and sg(G) ≤ n + 1 otherwise, except the case of an infinite...
full textOn total vertex irregularity strength of graphs
Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
full textMy Resources
Journal title
volume 6 issue 2
pages 121- 128
publication date 2015-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023