The Lie Algebra of Smooth Sections of a T-bundle
Authors
Abstract:
In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fields.
similar resources
A Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
full textThe Lie Algebra of a Smooth Manifold
It is well known that certain topological spaces are determined by rings of continuous real functions defined over them [l; 2; 3],1 and for differentiable manifolds the functions may be differen tiable [4; 7]. In this note we prove that the Lie algebra of all tangent vector fields with compact supports on an infinitely differentiable manifold determines the manifold, and that two such manifolds...
full texta comparative move analysis of the introduction sections of ma theses by iranian and native post-graduate students
since esp received universal attention to smooth the path for academic studies and productions, a great deal of research and studies have been directed towards this area. swales’ (1990) model of ra introduction move analysis has served a pioneering role of guiding many relevant studies and has proven to be productive in terms of helpful guidelines that are the outcome of voluminous productions ...
15 صفحه اولthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولDerivations of the Algebra of Sections of Superalgebra Bundles
In this paper we review the concepts of the superalgebra, superderivation and some properties of them. We will define algebraic and differential superderivations on a superalgebra and will prove some theorems about them, Then we consider a superalgebra bundle, that is an algebra bundle which its fibers are superalgebras and then characterize the superderivations of the algebra of sections of th...
full textOn dimensions of derived algebra and central factor of a Lie algebra
Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.
full textMy Resources
Journal title
volume 17 issue 4
pages 81- 85
publication date 2006-11
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023